Affiliation:
1. Laboratory for Floating Structures and Mooring Systems, Division of Marine Structures, School of Naval Architecture and Marine Engineering, National Technical University of Athens, 9 Heroon Polytechniou Avenue, GR 157–73 Athens, Greece
2. Institute of Oceanography, Hellenic Centre for Marine Research, 190 13 Anavyssos, Greece
Abstract
<abstract>
<p>In this study, an extreme value analysis of wind and wave parameters is presented for three specific locations in the Greek seas that are known to be advantageous in terms of joint power production (both offshore wind and wave) and bathymetric conditions. The analysis is conducted via the Peak-Over-Threshold method, examining wind speed, significant wave height and peak wave period data from the ERA5 reanalysis dataset. Moreover, a multi-purpose floating platform suitable for offshore energy production is presented, which combines wind and wave energy resources exploitation and can be adequately utilized at the selected locations. The analysis is built to incorporate the solutions of the diffraction, motion-dependent and pressure-dependent radiation problems around the floating structure, along with the mooring line and wind turbine (WT) characteristics. Subsequently, a coupled hydro-aero-elastic analysis was performed in the frequency domain, while a dynamic analysis was conducted in order to evaluate the mooring characteristics. Lastly, offshore wind output and absorbed wave energy values were estimated, and different types of mooring systems were compared in terms of efficiency. It has been concluded that the wind energy capacity factor is higher than 50% in all the examined locations, and by the mooring system comparison, the tension-leg platform (TLP) represents the best-case scenario for wave energy absorption.</p>
</abstract>
Publisher
American Institute of Mathematical Sciences (AIMS)
Reference73 articles.
1. GWEC (2021) Global offshore wind report. Available from: https://gwec.net/global-offshore-wind-report-2021/.
2. Butterfield S, Musial W, Jonkman J, et al. (2007) Engineering challenges for floating offshore wind turbines. National Renewable Energy Laboratory, Golden, United States. Available from: https://www.nrel.gov/docs/fy07osti/38776.pdf.
3. Huijs F, de Ridder EJ, Savenije F (2014) Comparison of model tests and coupled simulations for a semi-submersible floating wind turbine. Int Conf Offshore Mech Arct Eng 45530: V09AT09A012. https://doi.org/10.1115/OMAE2014-23217
4. Roddier D, Cermelli C, Aubault A, et al. (2010) Windfloat: A floating foundation for offshore wind turbines. J Renewable Sustainable Energy 2: 033104. https://doi.org/10.1063/1.3435339
5. Borg M, Walkusch Jensen M, Urquhart S, et al. (2020) Technical definition of the tetraspar demonstrator floating wind turbine foundation. Energies 13: 4911. https://doi.org/10.3390/en13184911
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献