GPU-accelerated non-dominated sorting genetic algorithm III for maximizing protein production

Author:

Kim Donghyeon,Kim Jinsung

Abstract

<abstract><p>Maximizing protein expression levels poses a major challenge in bioengineering. To increase protein expression levels, numerous factors, including codon bias, codon context bias, hidden stop codons, homologous recombination, suitable guanine-cytosine ratio, and hairpin loop structure, are crucial and quantified by six objective functions: CAI, CPB, HSC, HD, GC3, and SL. Optimizing these six objectives simultaneously constitutes a multi-objective optimization problem, aiming to identify the favorable Pareto solutions rather than a singular optimal solution. However, achieving satisfactory solutions requires numerous cycles and solutions, thus leading to a large number of functional evaluations. While there are frameworks for multi-objective optimization problems, they often lack efficient support for objective function computation in protein encoding. In this paper, we proposed a method to design a set of coding sequences (CDSs) based on non-dominated sorting genetic algorithm III (NSGA-III), accelerated using NVIDIA graphical processing units (GPUs). Experimental results indicated that our method is 15,454 times faster than the Pymoo framework and is evaluated using 100 solutions and 100 cycles. Since our GPU implementation facilitated the use of larger solutions and more cycles, we were able to design a superior set of CDSs by increasing solutions to 400 and cycles to 12,800. In addition, our NSGA-III-based method consistently surpassed the NSGA-II approach when the number of cycles exceeded 3200 by utilizing 100 solutions. Finally, we observed that a gradual reduction of the mutation probability as the number of cycles increased yielded better quality results than maintaining a fixed mutation probability.</p></abstract>

Publisher

American Institute of Mathematical Sciences (AIMS)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3