Sensitivity analysis unveils the interplay of drug-sensitive and drug-resistant Glioma cells: Implications of chemotherapy and anti-angiogenic therapy
-
Published:2024
Issue:1
Volume:32
Page:72-89
-
ISSN:2688-1594
-
Container-title:Electronic Research Archive
-
language:
-
Short-container-title:era
Author:
Hanum Latifah,Ertiningsih Dwi,Susyanto Nanang
Abstract
<abstract><p>This study presented a glioma growth model that accounts for drug-sensitive and drug-resistant cells in response to chemotherapy and anti-angiogenic therapy. Chemotherapy induces mutations in drug-sensitive cells, leading to the emergence of drug-resistant cells and highlighting the benefits of combined therapy. Anti-angiogenic therapy can mitigate mutations by inducing angiogenic dormancy. We have identified two reproduction numbers associated with the non-cell and disease-free states. Numerical sensitivity analysis has highlighted influential parameters that control glioma growth dynamics, emphasizing the interactions between drug-sensitive and drug-resistant cells. To reduce glioma endemicity among sensitive cases, it was recommended to decrease chemotherapy expenditure, increase angiogenic dormancy, and adjust chemotherapy infusion rates. In addition, to combat resistance to glioma endemicity, enhancing angiogenic dormancy is crucial.</p></abstract>
Publisher
American Institute of Mathematical Sciences (AIMS)
Subject
General Mathematics
Reference33 articles.
1. D. N. Louis, A. Perry, P. Wesseling, D. J. Brat, I. A Cree, D. Figarella-Branger, et al, WHO classification of tumors of the central nervoussystem, Int. Agency Res. Cancer, 4 (2007). https://doi.org/10.1093%2Fneuonc%2Fnoab106 2. M. Weller, W. Wick, K. Aldape, M. Brada, M. Berger, S. M, Pfister, et al, Glioma, Nat. Rev. Dis. Primers, 1 (2015), 15017. https://doi.org/10.1038/nrdp.2015.17 3. B. Mansoori, A. Mohammadi, S. Davudian, S. Shirjang, B. Baradaran, The different mechanisms of cancer drug resistance: A brief review, Adv. Pharm. Bull., 7 (2017), 339–348. https://doi.org/10.15171%2Fapb.2017.041 4. P. Shamshiripour, F. Hajiahmadi, S. Lotfi, N. R. Esmaeili, A. Zare, M. Akbarpour, et al., Next-generation anti-angiogenic therapies as a future prospect for glioma immunotherapy; from bench to bedside, Front. Immunol., 2022. https://doi.org/10.3389/fimmu.2022.859633 5. O. Nave, A mathematical model for treatment using chemo-immunotherapy, Heliyon, 8 (2022), e09288. https://doi.org/10.1016/j.heliyon.2022.e09288
|
|