Abstract
<abstract><p>In this paper, we considered the existence of ground state solutions to the following Choquard equation</p>
<p><disp-formula> <label/> <tex-math id="FE1"> \begin{document}$ \begin{eqnarray*} \left\{ \begin{aligned} &-\Delta u = \lambda u + (I_{\alpha}\ast F(u))f(u) + \mu|u|^{q-2}u \hskip0.5cm \mbox{in} \hskip0.2cm\mathbb{R}^{N}, \\ & \int\limits_{\mathbb{R}^{N}}|u|^{2}dx = a >0, \end{aligned} \right. \end{eqnarray*} $\end{document} </tex-math></disp-formula></p>
<p>where $ N \geq 3 $, $ I_{\alpha} $ is the Riesz potential of order $ \alpha \in (0, N) $, $ 2 < q \leq 2+ \frac{4}{N} $, $ \mu > 0 $ and $ \lambda \in \mathbb{R} $ is a Lagrange multiplier. Under general assumptions on $ F\in \mathcal{C}^{1}(\mathbb{R}, \mathbb{R}) $, for a $ L^{2} $-subcritical and $ L^{2} $-critical of perturbation $ \mu|u|^{q-2}u $, we established several existence or nonexistence results about the normalized ground state solutions.</p></abstract>
Publisher
American Institute of Mathematical Sciences (AIMS)
Reference38 articles.
1. S. Pekar, Untersuchung über die Elektronentheorie der Kristalle, Akademie Verlag, Berlin, 1954. https://doi.org/10.1515/9783112649305
2. E. H. Lieb, Existence and Uniqueness of the Minimizing Solution of Choquard's Nonlinear Equation, in Inequalities (eds. M, Loss and M. B. Ruskai), Springer, 2002. https://doi.org/10.1007/978-3-642-55925-9-37
3. K. R. W. Jones, Newtonian Quantum Gravity, Aust. J. Phys., 48 (1995), 1055–1082. https://doi.org/10.1071/ph951055
4. R. Penrose, On gravity's role in quantum state reduction, Gen. Relativ. Gravitatation, 28 (1996), 581–600. https://doi.org/10.1007/BF02105068
5. P. L. Lions, The Choquard equation and related questions, Nonlinear Anal., 4 (1980), 1063–1072. https://doi.org/10.1016/0362-546X(80)90016-4