Abnormal dynamics of functional brain network in Apolipoprotein E ε4 carriers with mild cognitive impairment

Author:

Yang Xiaoli,Liu Yan

Abstract

<abstract> <p>As is well known, the Apolipoprotein E (APOE) ε4 allele is the most pertinent genetic hazardous element for Alzheimer's disease (AD). Mild cognitive impairment (MCI) is considered a prodromal stage of AD. How the APOE ε4 allele modulates functional connectivity of brain network in MCI group is a question worth exploring. At present, some studies have evaluated the relationship between APOE ε4 allele and static functional network connectivity (sFNC) for MCI individuals, while the relationship of dynamic FNC (dFNC) with APOE ε4 allele still remained puzzled. Thus, we aim to detect aberrant dFNC for APOE ε4 carriers in the MCI group. On the basis of the resting-state functional magnetic resonance imaging (rs-fMRI) data, seven intrinsic brain functional networks were first recognized by the group independent component analysis. Then, the technique of sliding window was employed to determine the dFNC, and two dFNC states were detected by the k-means clustering algorithm. Finally, three temporal properties of fraction time, mean dwell time as well as transition numbers in the dFNC states were investigated. The results found that the dFNC and temporal properties in APOE ε4 carriers were abnormal compared with those in APOE ε4 noncarriers. In detail, in the MCI group, compared with APOE ε4 noncarriers, carriers had 9 pairs of abnormal dFNC and had significant differences in all the three temporal properties of the two dFNC states. In addition, two pairs of dFNC were found significantly correlated with clinical measure. This detected abnormal dynamics of temporal properties and dFNC in APOE ε4 carriers were similar with that reported for AD patients in previous studies. These results may suggest that in the MCI group, APOE carriers are more at risk for AD compared to noncarriers. Our findings may offer novel insights into the mechanisms of abnormal brain reconfiguration for individuals at genetic risk for AD, which could also be regarded as biomarkers for the early identification of AD.</p> </abstract>

Publisher

American Institute of Mathematical Sciences (AIMS)

Subject

General Mathematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3