Author:
Feng Lichao,Li Dongxue,Zhang Chunyan,Yang Yanmei
Abstract
<abstract>
<p>For a hybrid stochastic system, most existing feedback controllers need to observe modes at continuous times, which is feasible when the system's mode is observable and does not incur any cost. However, in most cases, the mode is not readily apparent, and identifying it always incurs a certain expense. Therefore, in order to reduce control costs, when designing a feedback controller, both the state and the mode should be observed at discrete moments. This paper introduces an intermittent feedback controller for stabilizing an unstable hybrid stochastic system through discrete delayed observations of state and mode. By utilizing M-matrix theory, intermittent control approach, and the comparison principle, we propose sufficient conditions for the stabilization theory of hybrid stochastic systems. An illustrative example is taken to validate the proposed theory.</p>
</abstract>
Publisher
American Institute of Mathematical Sciences (AIMS)