Deep autoencoders and multivariate analysis for enhanced hypertension detection during the COVID-19 era

Author:

Dashdondov Khongorzul1,Kim Mi-Hye2,Song Mi-Hwa3

Affiliation:

1. Department of Computer Engineering, College of IT Convergence, Gachon University, Seongnam 13120, South Korea

2. Department of Computer Engineering, Chungbuk National University, Cheongju 28644, South Korea

3. Division of Computer Engineering, College of IT Engineering, Hansung University, Seoul 02876, South Korea

Abstract

<abstract> <p>The incidence of hypertension has increased dramatically in both elderly and young populations. The incidence of hypertension also increased with the outbreak of the COVID-19 pandemic. To enhance hypertension detection accuracy, we proposed a multivariate outlier removal method based on the deep autoencoder (DAE) technique. The method was applied to the Korean National Health and Nutrition Examination Survey (KNHANES) database. Several studies have identified various risk factors for chronic hypertension. Chronic diseases are often multifactorial rather than isolated and have been associated with COVID-19. Therefore, it is necessary to study disease detection by considering complex factors. This study was divided into two main parts. The first module, data preprocessing, integrated external features for COVID-19 patients merged by region, age, and gender for the KHNANE-2020 and Kaggle datasets. We then performed multicollinearity (MC)-based feature selection for the KNHANES and integrated datasets. Notably, our MC analysis revealed that the "COVID-19 statement" feature, with a variance inflation factor (VIF) of 1.023 and a p-value &lt; 0.01, is significant in predicting hypertension, underscoring the interrelation between COVID-19 and hypertension risk. The next module used a predictive analysis step to detect and predict hypertension based on an ordinal encoder (OE) transformation and multivariate outlier removal using a DAE from the KNHANES data. We compared each classification model's accuracy, F1 score, and area under the curve (AUC). The experimental results showed that the proposed XGBoost model achieved the best results, with an accuracy rate of 87.78% (86.49%–88.1%, 95% CI), an F1 score of 89.95%, and an AUC of 92.28% for the COVID-19 cases, and an accuracy rate of 87.72% (85.86%–89.69%, 95% CI), an F1 score of 89.94%, and an AUC of 92.23% for the non-COVID-19 cases with the DAE_OE model. We improved the prediction performance of the classifiers used in all experiments by developing a high-quality training dataset implementing the DAE and OE in our method. Moreover, we experimentally demonstrated how the steps of the proposed method improved performance. Our approach has potential applications beyond hypertension detection, including other diseases such as stroke and cardiovascular disease.</p> </abstract>

Publisher

American Institute of Mathematical Sciences (AIMS)

Reference36 articles.

1. Korea Centers for Disease Control & Prevention. http://knhanes.cdc.go.kr. Accessed: February 4, 2014.

2. C. Wang, P. W. Horby, F. G. Hayden, G. F. Gao, A novel coronavirus outbreak of global health concern, Lancet, 395 (2020), 470–473. https://doi.org/10.1016/S0140-6736(20)30185-9

3. World Health Organization, https://www.who.int/health-topics/hypertension/#tab = tab_1

4. D. Khongorzul, M. H. Kim, Mahalanobis distance based multivariate outlier detection to improve performance of hypertension prediction, Neural Process. Lett., (2021), 1–13.

5. B. Liao, X. Jia, T. Zhang, R. Sun, DHDIP: An interpretable model for hypertension and hyperlipidemia prediction based on EMR data, Comput. Methods Programs Biomed., 226 (2022), 107088. https://doi.org/10.1016/j.cmpb.2022.107088

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3