Reinforcement learning for deep portfolio optimization

Author:

Yan Ruyu1,Jin Jiafei1,Han Kun2

Affiliation:

1. School of Management, Harbin Institute of Technology, Harbin 150000, China

2. Faculty of Computing, Harbin Institute of Technology, Harbin 150000, China

Abstract

<p>Portfolio optimization is an important financial task that has received widespread attention in the field of artificial intelligence. In this paper, a novel deep portfolio optimization (DPO) framework was proposed, combining deep learning and reinforcement learning with modern portfolio theory. DPO not only has the advantages of machine learning methods in investment decision-making, but also retains the essence of modern portfolio theory in portfolio optimization. Additionaly, it was crucial to simultaneously consider the time series and complex asset correlations of financial market information. Therefore, in order to improve DPO performance, features of assets information were extracted and fused. In addition, a novel risk-cost reward function was proposed, which realized optimal portfolio decision-making considering transaction cost and risk factors through reinforcement learning. Our results showed the superiority and generalization of the DPO framework for portfolio optimization tasks. Experiments conducted on two real-world datasets validated that DPO achieved the highest accumulative portfolio value compared to other strategies, demonstrating strong profitability. Its Sharpe ratio and maximum drawdown also performed excellently, indicating good economic benefits and achieving a trade-off between portfolio returns and risk. Additionally, the extraction and fusion of financial information features can significantly improve the applicability and effectiveness of DPO.</p>

Publisher

American Institute of Mathematical Sciences (AIMS)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3