Abstract
<abstract><p>In this article, we obtain new results on the unconditional well-posedness for a pair of periodic nonlinear dispersive equations using an abstract framework introduced by Kishimoto. This framework is based on a normal form reductions argument coupled with a number of crucial multilinear estimates.</p></abstract>
Publisher
American Institute of Mathematical Sciences (AIMS)
Reference28 articles.
1. S. K. Turitsyn, Blow-up in the Boussinesq equation, Phys. Rev. E: Stat. Nonlinear Biol. Soft Matter Phys., 47 (1993), R796–R799. https://doi.org/10.1103/PhysRevE.47.R796
2. F. Falk, E. W. Laedke, K. H. Spatschek, Stability of solitary-wave pulses in shape-memory alloys, Phys. Rev. B: Condens. Matter Mater. Phys., 36 (1987), 3031–3041. https://doi.org/10.1103/PhysRevB.36.3031
3. J. V. Boussinesq, Theory of waves and vortices propagating along a horizontal rectangular channel, communicating to the liquid in the channel generally similar velocities of the bottom surface, J. Math. Pures Appl., 17 (1872), 55–108.
4. V. G. Makhankov, Dynamics of classical solitons (in nonintegrable systems), Phys. Rep., 35 (1978), 1–128. https://doi.org/10.1016/0370-1573(78)90074-1
5. T. Kakutani, H. Ono, Weak non-linear hydromagnetic waves in a cold collision-free plasma, J. Phys. Soc. Jpn., 26 (1969), 1305–1318. https://doi.org/10.1143/JPSJ.26.1305