Fully convolutional video prediction network for complex scenarios

Author:

Han Rui1,Liang Shuaiwei2,Yang Fan2,Yang Yong1,Li Chen1

Affiliation:

1. Electric Power Science Research Institute, State Grid Zhejiang Electric Power Co., Ltd., Hangzhou 310014, China

2. State Grid Zhejiang Electric Power Co., Ltd., Hangzhou 310014, China

Abstract

<p>Traditional predictive models, often used in simpler settings, face issues like high latency and computational demands, especially in complex real-world environments. Recent progress in deep learning has advanced spatiotemporal prediction research, yet challenges persist in general scenarios: (ⅰ) Latency and computational load of models; (ⅱ) dynamic nature of real-world environments; (ⅲ) complex motion and monitoring scenes. To overcome these challenges, we introduced a novel spatiotemporal prediction framework. It replaced high-latency recurrent models with fully convolutional ones, improving inference speed. Furthermore, it addressed the dynamic nature of environments with multilevel frequency domain encoders and decoders, facilitating spatial and temporal learning. For complex monitoring scenarios, a large receptive field token mixer spatial-frequency attention units (SAU) and time attention units (TAU) ensured temporal and spatial continuity. This framework outperformed current methods in accuracy and speed on public datasets, showing promising practical applications beyond electricity monitoring.</p>

Publisher

American Institute of Mathematical Sciences (AIMS)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3