Author:
Zheng Zihan,Wang Juan,Cai Liming
Abstract
<p>In this paper, we study a quasilinear chemotaxis model with a nonlinear indirect consumption mechanism</p><p><disp-formula> <label/> <tex-math id="FE1"> \begin{document}$ \begin{equation*} \left\{ \begin{array}{ll} v_{1t} = \nabla \cdot\big(\psi(v_{1})\nabla v_{1}-\chi \phi(v_{1})\nabla v_{2}\big)+\lambda_{1}v_{1}-\lambda_{2}v_{1}^{\beta},\ &\ \ x\in \Omega, \ t>0,\\[2.5mm] v_{2t} = \Delta v_{2}-w^{\theta}v_{2}, \ &\ \ x\in \Omega, \ t>0,\\[2.5mm] 0 = \Delta w-w+v_{1}^{\alpha}, \ &\ \ x\in \Omega, \ t>0 ,\\[2.5mm] \end{array} \right. \end{equation*} $\end{document} </tex-math></disp-formula></p><p>in a smooth and bounded domain $ \Omega\subset\mathbb{R}^{n}(n\geq 1) $ with homogeneous Neumann boundary conditions, where $ \chi, \; \lambda_{1}, \; \lambda_{2}, \; \theta > 0, \; 0 < \alpha\leq\frac{1}{\theta}, \; \beta\geq 2, \; $ $ \psi $, and $ \phi $ are nonlinear functions that satisfy $ \psi(s)\geq a_{0}(s+1)^{r_{1}} $ and $ 0\leq\phi(s)\leq b_{0}s(s+1)^{r_{2}} $ for all $ s\geq 0 $ with $ a_{0}, b_{0} > 0 $ and $ r_{1}, r_{2}\in \mathbb{R}. $ It has been proven that if $ r_{1} > 2r_{2}+1, $ then the problem admits a global and bounded classical solution for some appropriate nonnegative initial data.</p>
Publisher
American Institute of Mathematical Sciences (AIMS)
Reference45 articles.
1. E. Keller, L. Segel, Initiation of slime mold aggregation viewed as an instability, J. Theor. Biol., 26 (1970), 399–415. https://doi.org/10.1016/0022-5193(70)90092-5
2. K. Osaki, A. Yagi, Finite dimensional attractor for one-dimensional Keller-Segel equations, Funkc. Ekvacioj, 44 (2001), 441–470.
3. T. Nagai, T. Senba, K. Yoshida, Application of the Trudinger-Moser inequality to a parabolic system of chemotaxis, Funkc. Ekvacioj, 40 (1997), 411–433.
4. D. Horstmann, G. Wang, Blow-up in a chemotaxis model without symmetry assumptions, Eur. J. Appl. Math., 12 (2001), 159–177. https://doi.org/10.1017/s0956792501004363
5. T. Senba, T. Suzuki, Parabolic system of chemotaxis: Blowup in a finite and the infinite time, Methods Appl. Anal., 8 (2001), 349–367. https://doi.org/10.4310/MAA.2001.v8.n2.a9