SunSpark: Fusion of time-domain and frequency-domain transformer for accurate identification of DC arc faults

Author:

Tian Chunpeng1,Xu Zhaoyang2,Liu Yunjie3,Wang Lukun1,Sun Pu1

Affiliation:

1. College of Intelligent Equipment, Shandong University of Science and Technology, Taian 271019, China

2. University of Cambridge, Wellcome-MRC Cambridge Stem Cell Institute, Cambridge, England

3. School of Communication Engineering, Taishan College of Scienceand Technology, Taian 271038, China

Abstract

<abstract><p>Photovoltaic (PV) power generation is pivotal to the energy strategies of various nations, yet it is plagued by significant security challenges. This paper proposes a large-scale neural network model that integrates time-domain and frequency-domain techniques for the detection of arc faults in PV systems. The algorithm leverages sequence decomposition to extract trend information from current signals, and then applies the Fourier transform to convert various encoded data into the frequency domain. Due to the sparsity of frequency-domain information, the computational cost of extracting and processing information in the frequency domain is minimal, resulting in high efficiency. The selectively extracted information is then input into a separate lightweight classifier for classification and recognition. The proposed intelligent framework not only effectively filters out high-frequency noise signals, but also demonstrates strong robustness against various disturbances, yielding exceptional recognition performance with an accuracy rate consistently surpassing 97$ \% $. Code and data are available at this repository: <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="https://github.com/yixizhuimeng?tab = projects">https://github.com/yixizhuimeng?tab = projects</ext-link>.</p></abstract>

Publisher

American Institute of Mathematical Sciences (AIMS)

Subject

General Mathematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3