Similarity surrogate-assisted evolutionary neural architecture search with dual encoding strategy

Author:

Xue Yu1,Zhang Zhenman1,Neri Ferrante12

Affiliation:

1. School of Computer Science, Nanjing University of Information Science and Technology, Jiangsu, China

2. School of Computer Science and Electronic Engineering, University of Surrey, United Kingdom

Abstract

<abstract><p>Neural architecture search (NAS), a promising method for automated neural architecture design, is often hampered by its overwhelming computational burden, especially the architecture evaluation process in evolutionary neural architecture search (ENAS). Although there are surrogate models based on regression or ranking to assist or replace the neural architecture evaluation process in ENAS to reduce the computational cost, these surrogate models are still affected by poor architectures and are not able to accurately find good architectures in a search space. To solve the above problems, we propose a novel surrogate-assisted NAS approach, which we call the similarity surrogate-assisted ENAS with dual encoding strategy (SSENAS). We propose a surrogate model based on similarity measurement to select excellent neural architectures from a large number of candidate architectures in a search space. Furthermore, we propose a dual encoding strategy for architecture generation and surrogate evaluation in ENAS to improve the exploration of well-performing neural architectures in a search space and realize sufficiently informative representations of neural architectures, respectively. We have performed experiments on NAS benchmarks to verify the effectiveness of the proposed algorithm. The experimental results show that SSENAS can accurately find the best neural architecture in the NAS-Bench-201 search space after only 400 queries of the tabular benchmark. In the NAS-Bench-101 search space, it can also get results that are comparable to other algorithms. In addition, we conducted a large number of experiments and analyses on the proposed algorithm, showing that the surrogate model measured via similarity can gradually search for excellent neural architectures in a search space.</p></abstract>

Publisher

American Institute of Mathematical Sciences (AIMS)

Subject

General Mathematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3