Design of a novel multimodal optimization algorithm and its application in logistics optimization

Author:

Gao Weishang1,Gao Qin1,Sun Lijie2,Chen Yue1

Affiliation:

1. School of Intelligent Manufacturing, Taizhou University, Taizhou 318000, China

2. School of Electronics and Information Engineering, Taizhou University, Taizhou 318000, China

Abstract

<abstract> <p>This study was purposed to design a multimodal continuous optimization algorithm based on a scheme agent to address the multidimensional complexity of optimization. An evolutionary sampling method of subarea exploration and multiple exploitations was developed by employing the scheme with variable population size so as to obtain higher optimization speed and accuracy. Second, the distribution plan was quantified into high-dimensional variable parameters based on the characteristics of logistics distribution optimization problems, and a high-dimensional discrete optimization model was constructed. Then, we identified and addressed the prominent issues and malignant virtual changes in the application of continuous algorithms to discrete problems. We have introduced a reasonable mutation mechanism during the optimization sampling process to mitigate this issue. Continuous real coordinate points were transformed across the neighborhood to standard discrete integer coordinate points by normalizing and logicizing the optimization sampling coordinates; also, the discretization of the continuous algorithm was realized. This approach could effectively prevent the algorithm from searching for targets in continuous optimization space, thereby fully reducing the complexity of the objective function distribution after conversion. The experiments showed that the transformed multimodal discrete optimization algorithm effectively addressed the optimization design problem of logistics distribution.</p> </abstract>

Publisher

American Institute of Mathematical Sciences (AIMS)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3