Single hyperspectral image super-resolution using a progressive upsampling deep prior network

Author:

Wang Haijun1,Zheng Wenli1,Wang Yaowei1,Yang Tengfei2,Zhang Kaibing3,Shang Youlin1

Affiliation:

1. School of Mathematics and Statistics, Henan University of Science and Technology, Luoyang 471000, China

2. Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100094, China

3. School of Computer Science, Xi'an Polytechnic University, Xi'an 710048, China

Abstract

<p>Hyperspectral image super-resolution (SR) aims to enhance the spectral and spatial resolution of remote sensing images, enabling more accurate and detailed analysis of ground objects. However, hyperspectral images have high dimensional characteristics and complex spectral patterns. As a result, it is critical to effectively leverage the spatial non-local self-similarity and spectral correlation within hyperspectral images. To address this, we have proposed a novel single hyperspectral image SR method based on a progressive upsampling deep prior network. Specifically, we introduced the spatial-spectral attention fusion unit (S<sup>2</sup>AF) based on residual connections, in order to extract spatial and spectral information from hyperspectral images. Then we developed the group convolutional upsampling (GCU) to efficiently utilize the spatial and spectral prior information inherent in hyperspectral images. To address the challenges posed by the high dimensionality of hyperspectral images and limited training dataset, we implemented a parameter-sharing grouped convolutional upsampling framework within the GCU to ensure model stability and enhance performance. The experimental results on three benchmark datasets demonstrated that the proposed single hyperspectral image SR using a progressive upsampling deep prior network (PUDPN) method effectively improves the reconstruction quality of hyperspectral images and achieves promising performance.</p>

Publisher

American Institute of Mathematical Sciences (AIMS)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3