Author:
Zhang Lanfang,Ao Jijun,Zhang Na
Abstract
<abstract><p>This paper studies a discontinuous Sturm-Liouville problem in which the spectral parameter appears not only in the differential equation but also in the transmission conditions. By constructing an appropriate Hilbert space and inner product, the eigenvalue and eigenfunction problems of the Sturm-Liouville problem are transformed into an eigenvalue problem of a certain self-adjoint operator. Next, the eigenfunctions of the problem and some properties of the eigenvalues are given via construction of the basic solution. The Green's function for the Sturm-Liouville problem is also given. Finally, the continuity of the eigenvalues and eigenfunctions of the problem is discussed. Especially, the differential expressions of the eigenvalues for some parameters have been obtained, including the parameters in the eigenparameter-dependent transmission conditions.</p></abstract>
Publisher
American Institute of Mathematical Sciences (AIMS)
Reference33 articles.
1. Q. Kong, A. Zettl, Eigenvalues of regular Sturm-Liouville problems, J. Differ. Equations, 131 (1996), 1–19. https://doi.org/10.1006/jdeq.1996.0154
2. Q. Kong, A. Zettl, Dependence of eigenvalues of Sturm-Liouville problems on the boundary, J. Differ. Equations, 126 (1996), 389–407. https://doi.org/10.1006/jdeq.1996.0056
3. A. Zettl, Sturm–Liouville Theory, American Mathematical Society, Providence, RI, USA, 2005.
4. A. Zettl, Eigenvalues of regular self-adjoint Sturm-Liouville problems, Commun. Appl. Anal., 18 (2014), 365–400.
5. M. Z. Zhang, K. Li, Dependence of eigenvalues of Sturm-Liouville problems with eigenparameter dependent boundary conditions, Appl. Math. Comput., 378 (2020), 125214. https://doi.org/10.1016/j.amc.2020.125214
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献