Targeted delivery of gold nanoparticles by neural stem cells to glioblastoma for enhanced radiation therapy: a review

Author:

Sababathy Mogesh1,Ramanathan Ghayathri2,Tan Suat Cheng3

Affiliation:

1. Department of Veterinary Pathology and Microbiology, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang, Malaysia

2. Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia

3. School of Health Sciences, Health Campus, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan, Malaysia

Abstract

<abstract> <p>Glioblastoma (GB) is the most malignant subtype of brain cancer derived from astrocytes in the brain. Radiotherapy is one of the standard treatments for GB patients, but its effectiveness is often limited by the radioresistance of aggressive GB cells. Higher dose of radiation needs to be applied to GB patients to eliminate these stubborn cells, but this also means more side effects on the adjacent healthy cells because the radiation beam could indistinguishably harm all cells exposed to it. In order to address this problem, various strategies have been studied to enhance the radiosensitivity among the radioresistant cell populations for targeted eradication of GB without harming other surrounding healthy cells. One of the promising strategies for radiosensitization is to use gold nanoparticles (AuNPs) which can enhance photoelectric effects within the radioresistant cells for higher killing efficiency even at low doses of radiation. Nonetheless, there is no evidence showing the capability of these nanoparticles to travel to brain tumor cells, therefore, the application of this nanotechnology is very much dependent on the development of a suitable carrier to deliver the AuNPs to the GB tumor sites specifically. In this review article, we discussed the potentials of neural stem cells (NSCs) as biological carriers to carry AuNPs to targeted GB tumor sites and provided new insights into the potential of NSC-based targeted delivery system for GB treatment. The information reported here may pave a new direction for clinical transformation of next-generation nanoparticle-assisted radiotherapy to optimize the efficacy of radiotherapy for GB treatment.</p> </abstract>

Publisher

American Institute of Mathematical Sciences (AIMS)

Subject

General Neuroscience

Reference88 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3