Effect of postnatal environmental enrichment on LTP induction in the CA1 area of hippocampus of prenatally traffic noise-stressed female rats

Author:

Aghighi Fatemeh,Salami Mahmoud,Talaei Sayyed Alireza

Abstract

<abstract> <p>Early-life stress negatively alters mammalian brain programming. Environmental enrichment (EE) has beneficial effects on brain structure and function. This study aimed to evaluate the effects of postnatal environmental enrichment on long-term potentiation (LTP) induction in the hippocampal CA1 area of prenatally stressed female rats. The pregnant Wistar rats were housed in a standard animal room and exposed to traffic noise stress 2 hours/day during the third week of pregnancy. Their offspring either remained intact (ST) or received enrichment (SE) for a month starting from postnatal day 21. The control groups either remained intact (CO) or received enrichment (CE). Basic field excitatory post-synaptic potentials (fEPSPs) were recorded in the CA1 area; then, LTP was induced by high-frequency stimulation. Finally, the serum levels of corticosterone were measured. Our results showed that while the prenatal noise stress decreased the baseline responses of the ST rats when compared to the control rats (P &lt; 0.001), the postnatal EE increased the fEPSPs of both the CE and SE animals when compared to the respective controls. Additionally, high-frequency stimulation (HFS) induced LTP in the fEPSPs of the CO rats (P &lt; 0.001) and failed to induce LTP in the fEPSPs of the ST animals. The enriched condition caused increased potentiation of post-HFS responses in the controls (P &lt; 0.001) and restored the disrupted synaptic plasticity of the CA1 area in the prenatally stressed rats. Likewise, the postnatal EE decreased the elevated serum corticosterone of prenatally stressed offspring (P &lt; 0.001). In conclusion, the postnatal EE restored the stress induced impairment of synaptic plasticity in rats' female offspring.</p> </abstract>

Publisher

American Institute of Mathematical Sciences (AIMS)

Subject

General Neuroscience

Reference56 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3