EpilepIndex: A novel feature engineering tool to detect epilepsy using EEG signals

Author:

Arunkumar N1,Nagaraj B2,Ruth Keziah M3

Affiliation:

1. Faculty of Electronics and Communication Engineering, Anna University, Chennai, India

2. Department of ECE, Rathinam Technical Campus, Coimbatore

3. Faculty of Technology, Rathinam Technical Campus, Anna University, Chennai, India

Abstract

<abstract> <p>Epilepsy is a common neurological disease characterized by seizures. A person with a seizure onset can lose consciousness which in turn can lead to fatal accidents. Electroencephalogram (EEG) is a recording of the electrical signals from the brain which is used to analyse the epileptic seizures. Physical visual examination of the EEG by trained neurologists is subjective and highly difficult due to the non-linear complex nature of the EEG. This opens a window for automatic detection of epileptic seizures using machine learning methods. In this work, we have used a standard database that consists of five different sets of EEG data including the epileptic EEG. Using this data, we have devised a novel 22 possible clinically significant cases with the combination of binary and multi class type of classification problem to automatically classify epileptic EEG. As the EEG is non-linear, we have devised 11 statistically significant non-linear entropy features to extract from this database. These features are fed to 10 different classifiers of various types for each of the 22 clinically significant cases and their classification accuracy is reported for 10-fold cross validation. Random Forest and Optimized Forest classifiers reported accuracies above 90% for all 22 cases considered in this study. Such vast possible clinically significant 22 cases from the combination of the data from the database considered has not been in the literature with the best of the knowledge of the authors. Comparing with the literature, several studies have presented one or few combinations of these 22 cases in this work. In comparison to similar works, the accuracies obtained by the classifiers were highly competitive. In addition, a novel integrated epilepsy detection index named EpilepIndex (I<sub>ED</sub>) is able to differentiate between epileptic EEG and a normal EEG with 100% accuracy.</p> </abstract>

Publisher

American Institute of Mathematical Sciences (AIMS)

Subject

Applied Mathematics,Computational Mathematics,General Agricultural and Biological Sciences,Modeling and Simulation,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3