Dynamic behavior of P53-Mdm2-Wip1 gene regulatory network under the influence of time delay and noise

Author:

Luo LanJiang12,Liu Haihong12,Yan Fang12

Affiliation:

1. Department of Mathematics, Yunnan Normal University, Kunming 650500, China

2. Key Laboratory of Complex System Modeling and Application for Universities in Yunnan, Kunming 650500, China

Abstract

<abstract><p>The tumor suppressor protein P53 can regulate the cell cycle, thereby preventing cell abnormalities. In this paper, we study the dynamic characteristics of the P53 network under the influence of time delay and noise, including stability and bifurcation. In order to study the influence of several factors on the concentration of P53, bifurcation analysis on several important parameters is conducted; the results show that the important parameters could induce P53 oscillations within an appropriate range. Then we study the stability of the system and the existing conditions of Hopf bifurcation by using Hopf bifurcation theory with time delays as the bifurcation parameter. It is found that time delay plays a key role in inducing Hopf bifurcation and regulating the period and amplitude of system oscillation. Meanwhile, the combination of time delays can not only promote the oscillation of the system but it also provides good robustness. Changing the parameter values appropriately can change the bifurcation critical point and even the stable state of the system. In addition, due to the low copy number of the molecules and the environmental fluctuations, the influence of noise on the system is also considered. Through numerical simulation, it is found that noise not only promotes system oscillation but it also induces system state switching. The above results may help us to further understand the regulation mechanism of the P53-Mdm2-Wip1 network in the cell cycle.</p></abstract>

Publisher

American Institute of Mathematical Sciences (AIMS)

Subject

Applied Mathematics,Computational Mathematics,General Agricultural and Biological Sciences,Modeling and Simulation,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3