The potential effects and mechanism of echinacoside powder in the treatment of Hirschsprung's Disease
-
Published:2023
Issue:8
Volume:20
Page:14222-14240
-
ISSN:1551-0018
-
Container-title:Mathematical Biosciences and Engineering
-
language:
-
Short-container-title:MBE
Author:
He Enyang1, Jiang Yuhang2, Wei Diwei3, Wang Yifan3, Sun Wenjing1, Jia Miao1, Shi Bowen1, Cui Hualei4
Affiliation:
1. Tianjin Medical University of Pediatric Surgery, Tianjin, China 2. Tianjin Medical University of Clinical Medicine, Tianjin, China 3. Tianjin Medical University of Pediatrics, Tianjin, China 4. Tianjin Children's Hospital of Minimally Invasive Surgery, Tianjin, China
Abstract
<abstract><p>Possible complications, such as intestinal obstruction and inflammation of the intestinal tract, can have a detrimental effect on the prognosis after surgery for Hirschsprung disease. The aim of this study was to investigate the potential targets and mechanisms of action of echinacoside to improve the prognosis of Hirschsprung disease. Genes related to the disease were obtained through analysis of the GSE96854 dataset and four databases: OMIM, DisGeNET, Genecard and NCBI. The targets of echinacoside were obtained from three databases: PharmMapper, Drugbank and TargetNet. The intersection of disease genes and drug targets was validated by molecular docking. The valid docked targets were further explored for their expression by using immunohistochemistry. In this study, enrichment analysis was used to explore the mechanistic pathways involved in the genes. Finally, we identified CA1, CA2, CA9, CA12, DNMT1, RIMS2, RPGRIP1L and ZEB2 as the core targets. Except for ZEB2, which is predominantly expressed in brain tissue, the remaining seven genes show tissue specificity and high expression in the gastrointestinal tract. RIMS2 possesses a high mutation phenomenon in pan-cancer, while a validated ceRNA network of eight genes was constructed. The core genes are involved in several signaling pathways, including the one-carbon metabolic process, carbonate dehydratase activity and others. This study may help us to further understand the pharmacological mechanisms of echinacoside and provide new guidance and ideas to guide the treatment of Hirschsprung disease.</p></abstract>
Publisher
American Institute of Mathematical Sciences (AIMS)
Subject
Applied Mathematics,Computational Mathematics,General Agricultural and Biological Sciences,Modeling and Simulation,General Medicine
Reference64 articles.
1. E. Panza, C. H. Knowles, C. Graziano, N. Thapar, A. J. Burns, M. Seri, et al., Genetics of human enteric neuropathies, Prog. Neurobiol., 96 (2012), 176–189. https://doi.org/10.1016/j.pneurobio.2012.01.001 2. A. M. Goldstein, N. Thapar, T. B. Karunaratne, R. De Giorgio, Clinical aspects of neurointestinal disease: Pathophysiology, diagnosis, and treatment, Dev. Biol., 417 (2016), 217–228. https://doi.org/10.1016/j.ydbio.2016.03.032 3. S. B. Gabriel, R. Salomon, A. Pelet, M. Angrist, J. Amiel, M. Fornage, et al., Segregation at three loci explains familial and population risk in Hirschsprung disease, Nat. Genet., 31 (2002), 89–93. https://doi.org/10.1038/ng868 4. E. G. Puffenberger, K. Hosoda, S. S. Washington, K. Nakao, D. deWit, M. Yanagisawa, et al., A missense mutation of the endothelin-B receptor gene in multigenic Hirschsprung's disease, Cell. 79 (1994), 1257–1266. https://doi.org/10.1016/0092-8674(94)90016-7 5. R. M. Hofstra, J. Osinga, G. Tan-Sindhunata, Y. Wu, E. J. Kamsteeg, R. P. Stulp, et al., A homozygous mutation in the endothelin-3 gene associated with a combined Waardenburg type 2 and Hirschsprung phenotype (Shah-Waardenburg syndrome), Nat. Genet., 12 (1996), 445–447. https://doi.org/10.1038/ng0496-445
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|