PBFT optimization algorithm based on community contributions

Author:

Wang Pengpeng,Wang Xu,Shen Yumin,Wang Jinlong,Xiong Xiaoyun

Abstract

<abstract><p>Community governance is the basic unit of social governance, and it is also an important direction for building a social governance pattern of co-construction, co-governance and sharing. Previous studies have solved the problems of data security, information traceability and participant enthusiasm in the process of community digital governance by building a community governance system based on blockchain technology and incentive mechanisms. The application of blockchain technology can solve the problems of low data security, difficulty in sharing and tracing and low enthusiasm on the part of multiple subjects regarding participation in community governance. The process of community governance involves the cooperation of multiple government departments and multiple social subjects. Under the blockchain architecture, the number of alliance chain nodes will reach 1000 with the expansion of community governance. The existing consensus algorithms for coalition chains are difficult to meet the high concurrent processing requirements under such large-scale nodes. An optimization algorithm has improved the consensus performance to a certain extent, but the existing systems still cannot meet the data needs of the community and are not suitable for community governance scenarios. Since the community governance process only involves the participation of relevant departments in users, all nodes in the network are not required to participate in the consensus under the blockchain architecture. Therefore, a practical Byzantine fault tolerance (PBFT) optimization algorithm based on community contribution (CSPBFT) is proposed here. First, consensus nodes are set according to different roles of participants in community activities, and participants are given different consensus permissions. Second, the consensus process is divided into different stages, and the amount of data processed by each consensus step is reduced. Finally, a two-level consensus network is designed to perform different consensus tasks, and reduce unnecessary communication between nodes to reduce the communication complexity of consensus among nodes. Compared with the PBFT algorithm, CSPBFT reduces the communication complexity from O(N2) to O(N2/C3). Finally, the simulation results show that, through rights management, network level setting and consensus phase division, when the number of nodes in the CSPBFT network is 100–400, the consensus throughput can reach 2000 TPS. When the node in the network is 1000, the instantaneous concurrency is guaranteed to be above 1000 TPS, which can meet the concurrent needs of the community governance scenario.</p></abstract>

Publisher

American Institute of Mathematical Sciences (AIMS)

Subject

Applied Mathematics,Computational Mathematics,General Agricultural and Biological Sciences,Modeling and Simulation,General Medicine

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3