Robust optimization of train scheduling with consideration of response actions to primary and secondary risks

Author:

Ghanbari Shirin Ramezan1,Afshar-Nadjafi Behrouz1,Sabzehparvar Majid2

Affiliation:

1. Department of Industrial Engineering, Qazvin Branch, Islamic Azad University, Qazvin, Iran

2. Department of Industrial Engineering, Karaj Branch, Islamic Azad University, Karaj, Iran

Abstract

<abstract> <p>Nowadays, with the rapid development of rail transportation systems, passenger demand and the possibility of the risks occurring in this industry have increased. These conditions cause uncertainty in passenger demand and the development of adverse impacts as a result of risks, which put the assurance of precise planning in jeopardy. To deal with uncertainty and lessen negative impacts, robust optimization of the train scheduling problem in the presence of risks is crucial. A two-stage mixed integer programming model is suggested in this study. In the first stage, the objective of the nominal train scheduling problem is to minimize the total travel time function and optimally determine the decision variables of the train timetables and the number of train stops. A robust optimization model is developed in the second stage with the aim of minimizing unsatisfied demand and reducing passenger dissatisfaction. Additionally, programming is carried out and the set of optimal risk response actions is identified in the proposed approach for the presence of primary and secondary risks in the train scheduling problem. A real-world example is provided to demonstrate the model's effectiveness and to compare the developed models. The results demonstrate that secondary risk plays a significant role in the process of optimal response actions selection. Furthermore, in the face of uncertainty, robust solutions can significantly and effectively minimize unsatisfied demand by a slightly rise in the travel time and the number of stops obtained from the nominal problem.</p> </abstract>

Publisher

American Institute of Mathematical Sciences (AIMS)

Subject

Applied Mathematics,Computational Mathematics,General Agricultural and Biological Sciences,Modeling and Simulation,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3