Dynamics of a stochastic hepatitis B virus transmission model with media coverage and a case study of China

Author:

Ma Jiying,Ma Shasha

Abstract

<abstract><p>Hepatitis B virus (HBV) infection is a global public health problem and there are $ 257 $ million people living with chronic HBV infection throughout the world. In this paper, we investigate the dynamics of a stochastic HBV transmission model with media coverage and saturated incidence rate. Firstly, we prove the existence and uniqueness of positive solution for the stochastic model. Then the condition on the extinction of HBV infection is obtained, which implies that media coverage helps to control the disease spread and the noise intensities on the acute and chronic HBV infection play a key role in disease eradication. Furthermore, we verify that the system has a unique stationary distribution under certain conditions, and the disease will prevail from the biological perspective. Numerical simulations are conducted to illustrate our theoretical results intuitively. As a case study, we fit our model to the available hepatitis B data of mainland China from 2005 to 2021.</p></abstract>

Publisher

American Institute of Mathematical Sciences (AIMS)

Subject

Applied Mathematics,Computational Mathematics,General Agricultural and Biological Sciences,Modeling and Simulation,General Medicine

Reference54 articles.

1. L. Zou, W. Zhang, S. Ruan, Modeling the transmission dynamics and control of hepatitis B virus in China, J. Theor. Biol., 262 (2010), 330–338. https://doi.org/10.1016/j.jtbi.2009.09.035

2. World health organization, Hepatitis B, Key facts, 2022. Available from: https://www.who.int/news-room/fact-sheets/detail/hepatitis-b

3. Chinese Center for Disease Control and Prevention, Chinese Center for Disease Control and Prevention, 2022. Available from: https://www.chinacdc.cn

4. R. M. Anderson, R. M. May, Infectious Disease of Humans: Dynamics and Control, Oxford University Press, Oxford, 1991.

5. S. Zhao, Z. Xu, Y. Lu, A mathematical model of hepatitis B virus transmission and its application for vaccination strategy in China, Int. J. Epidemiol., 29 (2000), 744–752. https://doi.org/10.1093/ije/29.4.744

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3