GL-FusionNet: Fusing global and local features to classify deep and superficial partial thickness burn
-
Published:2023
Issue:6
Volume:20
Page:10153-10173
-
ISSN:1551-0018
-
Container-title:Mathematical Biosciences and Engineering
-
language:
-
Short-container-title:MBE
Author:
Li Zhiwei1, Huang Jie2, Tong Xirui2, Zhang Chenbei1, Lu Jianyu2, Zhang Wei2, Song Anping1, Ji Shizhao2
Affiliation:
1. School of Computer Engineering and Science, Shanghai University, Shanghai 200444, China 2. Department of Burn Surgery, the First Affiliated Hospital of Naval Medical University, Shanghai 200444, China
Abstract
<abstract><p>Burns constitute one of the most common injuries in the world, and they can be very painful for the patient. Especially in the judgment of superficial partial thickness burns and deep partial thickness burns, many inexperienced clinicians are easily confused. Therefore, in order to make burn depth classification automated as well as accurate, we have introduced the deep learning method. This methodology uses a U-Net to segment burn wounds. On this basis, a new thickness burn classification model that fuses global and local features (GL-FusionNet) is proposed. For the thickness burn classification model, we use a ResNet50 to extract local features, use a ResNet101 to extract global features, and finally implement the add method to perform feature fusion and obtain the deep partial or superficial partial thickness burn classification results. Burns images are collected clinically, and they are segmented and labeled by professional physicians. Among the segmentation methods, the U-Net used achieved a Dice score of 85.352 and IoU score of 83.916, which are the best results among all of the comparative experiments. In the classification model, different existing classification networks are mainly used, as well as a fusion strategy and feature extraction method that are adjusted to conduct experiments; the proposed fusion network model also achieved the best results. Our method yielded the following: accuracy of 93.523, recall of 93.67, precision of 93.51, and F1-score of 93.513. In addition, the proposed method can quickly complete the auxiliary diagnosis of the wound in the clinic, which can greatly improve the efficiency of the initial diagnosis of burns and the nursing care of clinical medical staff.</p></abstract>
Publisher
American Institute of Mathematical Sciences (AIMS)
Subject
Applied Mathematics,Computational Mathematics,General Agricultural and Biological Sciences,Modeling and Simulation,General Medicine
Reference33 articles.
1. M. D. Peck, M. Jeschke, K. Collins, Epidemiology of burn injuries globally, Burns, 37 (2011), 1087–1274. 2. M. G. Jeschke, G. G. Gauglitz, G. A. Kulp, C. C. Finnerty, F. N. Williams, R. Kraft, et al., Long-term persistance of the pathophysiologic response to severe burn injury, PLoS One, 6 (2011), 21245. https://doi.org/10.1371/journal.pone.0021245 3. Y. Wang, J. Beekman, J. Hew, S. Jackson, A. C. Issler-Fisher, R. Parungao, et al., Burn injury: challenges and advances in burn wound healing, infection, pain and scarring, Adv. Drug Deliv. Rev., 123 (2018), 3–17. https://doi.org/10.1016/j.addr.2017.09.018 4. D. Herndon, F. Zhang, W. Lineaweaver, Metabolic responses to severe burn injury, Ann. Plast. Surg., 88 (2022), 128–131. https://doi.org/10.1097/SAP.0000000000003142 5. A. E. Stoica, C. Chircov, A. M. Grumezescu, Hydrogel dressings for the treatment of burn wounds: An up-to-date overview, Materials, 13 (2020), 2853. https://doi.org/10.3390/ma13122853
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|