IDEFE algorithm: IDE algorithm optimizes the fuzzy entropy for the gland segmentation

Author:

Li Mingzhu1,Li Ping2,Liu Yao3

Affiliation:

1. Department of Thyroid and Breast Surgery, East Branch of Quanzhou First Hospital, Fujian 362000, China

2. Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou, Fujian 362000, China

3. College of Medicine, Huaqiao University, Quanzhou, Fujian 362021, China

Abstract

<abstract> <p>Breast cancer occurs in the epithelial tissue of the gland, so the accuracy of gland segmentation is crucial to the physician's diagnosis. An innovative technique for breast mammography image gland segmentation is put forth in this paper. In the first step, the algorithm designed the gland segmentation evaluation function. Then a new mutation strategy is established, and the adaptive controlled variables are used to balance the ability of improved differential evolution (IDE) in terms of investigation and convergence. To evaluate its performance, The proposed method is validated on a number of benchmark breast images, including four types of glands from the Quanzhou First Hospital, Fujian, China. Furthermore, the proposed algorithm is been systematically compared to five state-of-the-art algorithms. From the average MSSIM and boxplot, the evidence suggests that the mutation strategy may be effective in searching the topography of the segmented gland problem. The experiment results demonstrated that the proposed method has the best gland segmentation results compared to other algorithms.</p> </abstract>

Publisher

American Institute of Mathematical Sciences (AIMS)

Subject

Applied Mathematics,Computational Mathematics,General Agricultural and Biological Sciences,Modeling and Simulation,General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Research on Object Detection and Segmentation Algorithm based on Deep Learning;2023 Global Conference on Information Technologies and Communications (GCITC);2023-12-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3