Author:
Jing Peng,Wang Weichao,Jiang Chengxi,Zha Ye,Ming Baixu
Abstract
<abstract>
<p>E-bikes have become one of China's most popular travel modes. The authorities have issued helmet-wearing regulations to increase wearing rates to protect e-bike riders' safety, but the effect is unsatisfactory. To reveal the factors influencing the helmet-wearing behavior of e-bike riders, this study constructed a theoretical Push-Pull-Mooring (PPM) model to analyze the factor's relationship from the perspective of travel behavior switching. A two-step SEM-ANFIS method is proposed to test relationships, rank importance and analyze the combined effect of psychological variables. The Partial Least Squares Structural Equation Model (PLS-SEM) was used to obtain the significant influencing factors. The Adaptive Network-based Fuzzy Inference System (ANFIS), a nonlinear approach, was applied to analyze the importance of the significant influencing factors and draw refined conclusions and suggestions from the analysis of the combined effects. The PPM model we constructed has a good model fit and high model predictive validity (GOF = 0.381, R<sup>2</sup> = 0.442). We found that three significant factors tested by PLS-SEM, perceived legal norms (β = 0.234, p < 0.001), perceived inconvenience (β = -0.117, p < 0.001) and conformity tendency (β = 0.241, p < 0.05), are the most important factors in the effects of push, mooring and pull. The results also demonstrated that legal norm is the most important factor but has less effect on people with low perceived vulnerability, and low subjective norms will make people with high conformity tendency to follow the crowd blindly. This study could contribute to developing refined interventions to improve the helmet-wearing rate effectively.</p>
</abstract>
Publisher
American Institute of Mathematical Sciences (AIMS)
Subject
Applied Mathematics,Computational Mathematics,General Agricultural and Biological Sciences,Modeling and Simulation,General Medicine
Reference61 articles.
1. J. A. Zhu, S. Dai, X. Y. Zhu, Characteristics of Electric Bike Accidents and Safety Enhancement Strategies, Urban Transp. China, 2018 (2018), 15–20.
2. CNBN, Electric Bicycles Are Nearly 300 Million in China, Available from: http://news.cnr.cn/rebang/20211011/t20211011_525629773.shtml.
3. D. Zhang, T. F. Ren, M. M. Zhang, Y. C. Zheng, H. Y Zhou, Analysis and prevention of the causes of electric bicycle accidents based on safety checklists (in Chinese), Sci. Technol. Innovation, 07 (2021), 37–39. https://doi.org/10.15913/j.cnki.kjycx.2021.07.011
4. H. Leijdesdorff, J. van Dijck, P. Krijnen, C. Vleggeert-Lankamp, I. Schipper, Injury pattern, hospital triage, and mortality of 1250 patients with severe traumatic brain injury caused by road traffic accidents, J. Neurotrauma, 31 (2014), 459–465. https://doi.org/10.1089/neu.2013.3111
5. M. F. Zavareh, A. M. Hezaveh, T. Nordfjærn, Intention to use bicycle helmet as explained by the Health Belief Model, comparative optimism and risk perception in an Iranian sample, Transp. Res. Part F Psychol. Behav., 54 (2018), 248–263. https://doi.org/10.1016/j.trf.2018.02.003
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献