A graph neural network-enhanced knowledge graph framework for intelligent analysis of policing cases

Author:

Zhu Hongqiang

Abstract

<abstract> <p>In this paper, we model a knowledge graph based on graph neural networks, conduct an in-depth study on building knowledge graph embeddings for policing cases, and design a graph neural network-enhanced knowledge graph framework. In detail, we use the label propagation algorithm (LPA) to assist the convolutional graph network (GCN) in training the edge weights of the knowledge graph to construct a policing case prediction method. This improves the traditional convolutional neural network from a single-channel network to a multichannel network to accommodate the multiple feature factors of policing cases. In addition, this expands the perceptual field of the convolutional neural network to improve prediction accuracy. The experimental results show that the multichannel convolutional neural network's prediction accuracy can reach 87.7%. To ensure the efficiency of the security case analysis network, an efficient pairwise feature extraction base module is added to enhance the backbone network, which reduces the number of parameters of the whole network and decreases the complexity of operations. We experimentally demonstrate that this method achieves a better balance of efficiency and performance by obtaining approximate results with 53.5% fewer floating-point operations and 70.2% fewer number parameters than its contemporary work.</p> </abstract>

Publisher

American Institute of Mathematical Sciences (AIMS)

Subject

Applied Mathematics,Computational Mathematics,General Agricultural and Biological Sciences,Modeling and Simulation,General Medicine

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Edge-enabled anomaly detection and information completion for social network knowledge graphs;Wireless Networks;2024-02-09

2. Web Crawlers for News Aggregation Systems based on Graph Convolutional Neural Networks;2023 International Conference on Computer Science and Automation Technology (CSAT);2023-10-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3