Research on user recruitment algorithms based on user trajectory prediction with sparse mobile crowd sensing

Author:

Zhang Jing1,Wang Qianqian1,Lang Ding2,Xu Yuguang1,Li Hong-an1,Li Xuewen3

Affiliation:

1. School of Computer Science and Technology, Xi'an University of Science and Technology, Xian 710600, China

2. School of Energy Enginnering, Xi'an University of Science and Technology, Xian 710600, China

3. School of Safety Science and Engineering, Xi'an University of Science and Technology, Xian 710600, China

Abstract

<abstract><p>Sparse mobile crowd sensing saves perception cost by recruiting a small number of users to perceive data from a small number of sub-regions, and then inferring data from the remaining sub-regions. The data collected by different people on their respective trajectories have different values, and we can select participants who can collect high-value data based on their trajectory predictions. In this paper, we study two aspects of user trajectory prediction and user recruitment. First, we propose an STGCN-GRU user trajectory prediction algorithm, which uses the STGCN algorithm to extract features related to temporal and spatial information from the trajectory map, and then inputs the feature sequences into GRU for trajectory prediction, and this algorithm improves the accuracy of user trajectory prediction. Second, an ADQN (action DQN) user recruitment algorithm is proposed.The ADQN algorithm improves the objective function in DQN on the idea of reinforcement learning. The action with the maximum input value is found from the Q network, and then the output value of the objective function of the corresponding action Q network is found. This reduces the overestimation problem that occurs in Q networks and improves the accuracy of user recruitment. The experimental results show that the evaluation metrics FDE and ADE of the STGCN-GRU algorithm proposed in this paper are better than other representative algorithms. And the experiments on two real datasets verify the effectiveness of the ADQN user selection algorithm, which can effectively improve the accuracy of data inference under budget constraints.</p></abstract>

Publisher

American Institute of Mathematical Sciences (AIMS)

Subject

Applied Mathematics,Computational Mathematics,General Agricultural and Biological Sciences,Modeling and Simulation,General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3