Revan Sombor indices: Analytical and statistical study

Author:

Kulli V. R.1,Méndez-Bermúdez J. A.2,Rodríguez José M.3,Sigarreta José M.4

Affiliation:

1. Department of Mathematics, Gulbarga University, Gulbarga 585106, India

2. Instituto de Física, Benemérita Universidad Autónoma de Puebla, Apartado Postal J-48, Puebla 72570, Mexico

3. Departamento de Matemáticas, Universidad Carlos III de Madrid, Avenida de la Universidad 30, 28911 Leganés, Madrid, Spain

4. Facultad de Matemáticas, Universidad Autónoma de Guerrero, Carlos E. Adame No.54 Col. Garita, 39650 Acalpulco Gro., Mexico

Abstract

<abstract><p>In this paper, we perform analytical and statistical studies of Revan indices on graphs $ G $: $ R(G) = \sum_{uv \in E(G)} F(r_u, r_v) $, where $ uv $ denotes the edge of $ G $ connecting the vertices $ u $ and $ v $, $ r_u $ is the Revan degree of the vertex $ u $, and $ F $ is a function of the Revan vertex degrees. Here, $ r_u = \Delta + \delta - d_u $ with $ \Delta $ and $ \delta $ the maximum and minimum degrees among the vertices of $ G $ and $ d_u $ is the degree of the vertex $ u $. We concentrate on Revan indices of the Sombor family, i.e., the Revan Sombor index and the first and second Revan $ (a, b) $-$ KA $ indices. First, we present new relations to provide bounds on Revan Sombor indices which also relate them with other Revan indices (such as the Revan versions of the first and second Zagreb indices) and with standard degree-based indices (such as the Sombor index, the first and second $ (a, b) $-$ KA $ indices, the first Zagreb index and the Harmonic index). Then, we extend some relations to index average values, so they can be effectively used for the statistical study of ensembles of random graphs.</p></abstract>

Publisher

American Institute of Mathematical Sciences (AIMS)

Subject

Applied Mathematics,Computational Mathematics,General Agricultural and Biological Sciences,Modeling and Simulation,General Medicine

Reference39 articles.

1. I. Gutman, O. E. Polansky, Mathematical Concepts in Organic Chemistry, Springer, Berlin, Heidelberg, 1986. https://doi.org/10.1007/978-3-642-70982-1

2. V. R. Kulli, Multiplicative Connectivity Indices of Nanostructures, LAP LEMBERT Academic Publishing, Rīgā, 2018. http://dx.doi.org/10.22147/jusps-A/290101

3. V. R. Kulli, College Graph Theory, Vishwa International Publications, Gulbarga, India, 2012.

4. V. R. Kulli, Revan indices of oxide and honeycomb networks, Int. J. Math. Appl., 55 (2017), 7.

5. V. R. Kulli, F-Revan index and F-Revan polynomial of some families of benzenoid systems, J. Global Res. Math. Arch., 5 (2018), 1–6.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3