Revan Sombor indices: Analytical and statistical study
-
Published:2023
Issue:2
Volume:20
Page:1801-1819
-
ISSN:1551-0018
-
Container-title:Mathematical Biosciences and Engineering
-
language:
-
Short-container-title:MBE
Author:
Kulli V. R.1, Méndez-Bermúdez J. A.2, Rodríguez José M.3, Sigarreta José M.4
Affiliation:
1. Department of Mathematics, Gulbarga University, Gulbarga 585106, India 2. Instituto de Física, Benemérita Universidad Autónoma de Puebla, Apartado Postal J-48, Puebla 72570, Mexico 3. Departamento de Matemáticas, Universidad Carlos III de Madrid, Avenida de la Universidad 30, 28911 Leganés, Madrid, Spain 4. Facultad de Matemáticas, Universidad Autónoma de Guerrero, Carlos E. Adame No.54 Col. Garita, 39650 Acalpulco Gro., Mexico
Abstract
<abstract><p>In this paper, we perform analytical and statistical studies of Revan indices on graphs $ G $: $ R(G) = \sum_{uv \in E(G)} F(r_u, r_v) $, where $ uv $ denotes the edge of $ G $ connecting the vertices $ u $ and $ v $, $ r_u $ is the Revan degree of the vertex $ u $, and $ F $ is a function of the Revan vertex degrees. Here, $ r_u = \Delta + \delta - d_u $ with $ \Delta $ and $ \delta $ the maximum and minimum degrees among the vertices of $ G $ and $ d_u $ is the degree of the vertex $ u $. We concentrate on Revan indices of the Sombor family, i.e., the Revan Sombor index and the first and second Revan $ (a, b) $-$ KA $ indices. First, we present new relations to provide bounds on Revan Sombor indices which also relate them with other Revan indices (such as the Revan versions of the first and second Zagreb indices) and with standard degree-based indices (such as the Sombor index, the first and second $ (a, b) $-$ KA $ indices, the first Zagreb index and the Harmonic index). Then, we extend some relations to index average values, so they can be effectively used for the statistical study of ensembles of random graphs.</p></abstract>
Publisher
American Institute of Mathematical Sciences (AIMS)
Subject
Applied Mathematics,Computational Mathematics,General Agricultural and Biological Sciences,Modeling and Simulation,General Medicine
Reference39 articles.
1. I. Gutman, O. E. Polansky, Mathematical Concepts in Organic Chemistry, Springer, Berlin, Heidelberg, 1986. https://doi.org/10.1007/978-3-642-70982-1 2. V. R. Kulli, Multiplicative Connectivity Indices of Nanostructures, LAP LEMBERT Academic Publishing, Rīgā, 2018. http://dx.doi.org/10.22147/jusps-A/290101 3. V. R. Kulli, College Graph Theory, Vishwa International Publications, Gulbarga, India, 2012. 4. V. R. Kulli, Revan indices of oxide and honeycomb networks, Int. J. Math. Appl., 55 (2017), 7. 5. V. R. Kulli, F-Revan index and F-Revan polynomial of some families of benzenoid systems, J. Global Res. Math. Arch., 5 (2018), 1–6.
|
|