Zero-shot learning via visual-semantic aligned autoencoder

Author:

Wei Tianshu1,Huang Jinjie12,Jin Cong1

Affiliation:

1. School of Computer Science and Technology, Harbin University of Science and Technology, Harbin 150006, China

2. School of Automation, Harbin University of Science and Technology, Harbin 150006, China

Abstract

<abstract> <p>Zero-shot learning recognizes the unseen samples via the model learned from the seen class samples and semantic features. Due to the lack of information of unseen class samples in the training set, some researchers have proposed the method of generating unseen class samples by using generative models. However, the generated model is trained with the training set samples first, and then the unseen class samples are generated, which results in the features of the unseen class samples tending to be biased toward the seen class and may produce large deviations from the real unseen class samples. To tackle this problem, we use the autoencoder method to generate the unseen class samples and combine the semantic features of the unseen classes with the proposed new sample features to construct the loss function. The proposed method is validated on three datasets and showed good results.</p> </abstract>

Publisher

American Institute of Mathematical Sciences (AIMS)

Subject

Applied Mathematics,Computational Mathematics,General Agricultural and Biological Sciences,Modeling and Simulation,General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3