Affiliation:
1. College of Mathematics, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China
2. College of Mathematics and Statistics, Ningxia University, Yinchuan 750021, China
3. Key Laboratory of Mathematical Modelling and High Performance Computing of Air Vehicles (NUAA), MIIT, Nanjing 211106, China
Abstract
<abstract><p>Zika is an infectious disease with multiple transmission routes, which is related to severe congenital disabilities, especially microcephaly, and has attracted worldwide concern. This paper aims to study the dynamic behavior and optimal control of the disease. First, we establish a stochastic reaction-diffusion model (SRDM) for Zika virus, including human-mosquito transmission, human-human sexual transmission, and vertical transmission of mosquitoes, and prove the existence, uniqueness, and boundedness of the global positive solution of the model. Then, we discuss the sufficient conditions for disease extinction and the existence of a stationary distribution of positive solutions. After that, three controls, i.e. personal protection, treatment of infected persons, and insecticides for spraying mosquitoes, are incorporated into the model and an optimal control problem of Zika is formulated to minimize the number of infected people, mosquitoes, and control cost. Finally, some numerical simulations are provided to explain and supplement the theoretical results obtained.</p></abstract>
Publisher
American Institute of Mathematical Sciences (AIMS)
Subject
Applied Mathematics,Computational Mathematics,General Agricultural and Biological Sciences,Modeling and Simulation,General Medicine
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献