Three-dimensional inversion analysis of transient electromagnetic response signals of water-bearing abnormal bodies in tunnels based on numerical characteristic parameters

Author:

Xu Yikang1,Sun Zhaohua12,Gu Wei3,Qian Wangping1,Shen Qiangru1,Gong Jian24

Affiliation:

1. School of Transportation and Civil Engineering, Nantong University, Nantong 226019, China

2. Guangxi Key Laboratory of Disaster Prevention and Engineering Safety, Guangxi University, Nanning 530004, China

3. Rudong Jinheng City Investment Group Co., Ltd., Nantong 226400, China

4. Key Laboratory of Disaster Prevention and Structural Safety of Ministry of Education, Guangxi University, Nanning 530004, China

Abstract

<abstract> <p>The transient electromagnetic inversion of detection signals mainly depends on fast inversion in the half-space state. However, the interpretation results have a certain degree of uncertainty and blindness, so the accuracy and applicability of the three-dimensional full-space inversion need to be investigated. Two different three-dimensional full-space inversions were carried out. First, the numerical characteristic parameters of the response signals were extracted. Then, the correlations between the numerical characteristic parameters and physical parameters of the water-bearing abnormal bodies were judged, and the judgment criterion of the iterative direction was proposed. Finally, the inversion methods of the iterative algorithm and the BP neural network were utilized based on the virtual example samples. The results illustrate that the proposed numerical characteristic parameters can accurately reflect the response curve of the full-space surrounding rock. The difference in the numerical characteristic parameters was used to determine the update direction and correction value. Both inversion methods have their advantages and disadvantages. A single inversion method cannot realize the three-dimensional inversion of the physical parameters of water-bearing abnormal bodies quickly, effectively and intelligently. Therefore, the benefits of different inversion methods need to be considered to comprehensively select a reasonable inversion method. The results can provide essential ideas for the subsequent interpretation of the three-dimensional spatial response signals of water-bearing abnormal bodies.</p> </abstract>

Publisher

American Institute of Mathematical Sciences (AIMS)

Subject

Applied Mathematics,Computational Mathematics,General Agricultural and Biological Sciences,Modeling and Simulation,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3