Forecasting of garlic price based on DA-RNN using attention weight of temporal fusion transformers

Author:

Choi Eunjae1,Park Yoosang2,Choi Jongsun2,Choi Jaeyoung2,Mesicek Libor3

Affiliation:

1. Department of IT Logistics & Distribution, Soongsil University, Seoul 06978, Republic of Korea

2. School of Computer Science and Engineering, Soongsil University, Seoul 06978, Republic of Korea

3. Department of Economics and Management, Jan Evangelista Purkyne University, Pasteurova 3544/1, Usti nad Labem 40096, Czech Republic

Abstract

<abstract> <p>Garlic is a major condiment vegetable grown in South Korea. The price of garlic has a great impact on Korean society and the economy, which requires price stabilization through preemptive supply and demand management. Therefore, the government attempts to keep the price adjusted according to the predicted production cost. However, classic statistical models or well-known deep learning models have lower forecast accuracy when the number of input factors increases. The aforementioned issue could make analysis approaches and their implementation difficult, and the government would confront failure in proper supply and demand management. To solve this problem, we propose a new hybrid deep-learning approach that employs well-known attention models. Recent attention models have achieved outstanding performance in time-series dataset forecasting. However, when input datasets contain dozens or hundreds of variables, the forecasting performance cannot be guaranteed because the prediction accuracy decreases. In this study, a novel approach utilizing attention weights for forecasting prices is introduced. Experience shows that forecasting accuracy can be improved using the proposed model, which deals with different variables related to garlic prices, such as atmospheric conditions, logistics processes, and environmental circumstances. The proposed approach and its model contribute to forecasting outputs for different research domains by using a variety of attention weight models.</p> </abstract>

Publisher

American Institute of Mathematical Sciences (AIMS)

Subject

Applied Mathematics,Computational Mathematics,General Agricultural and Biological Sciences,Modeling and Simulation,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3