Influenced node discovery in a temporal contact network based on common nodes

Author:

Huang Jinjing1,Wang Xi12

Affiliation:

1. School of Software and Services Outsourcing, Suzhou Vocational Institute of Industrial Technology, Suzhou 215004, China

2. Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education, Jilin University, Changchun 130012, China

Abstract

<abstract><p>Verification is the only way to make sure if a node is influenced or not because of the uncertainty of information diffusion in the temporal contact network. In the previous methods, only $ N $ influenced nodes could be found for a given number of verifications $ N $. The target of discovering influenced nodes is to find more influenced nodes with the limited number of verifications. To tackle this difficult task, the common nodes on the temporal diffusion paths is proposed in this paper. We prove that if a node $ v $ is confirmed as the influenced node and there exist common nodes on the temporal diffusion paths from the initial node to the node $ v $, these common nodes can be regarded as the influenced nodes without verification. It means that it is possible to find more than $ N $ influenced nodes given $ N $ verifications. The common nodes idea is applied to search influenced nodes in the temporal contact network, and three algorithms are designed based on the idea in this paper. The experiments show that our algorithms can find more influenced nodes in the existence of common nodes.</p></abstract>

Publisher

American Institute of Mathematical Sciences (AIMS)

Subject

Applied Mathematics,Computational Mathematics,General Agricultural and Biological Sciences,Modeling and Simulation,General Medicine

Reference38 articles.

1. A. Guille, H. Hacid, C. Favre, D. A. Zighed, Information diffusion in online social networks: A survey, ACM SIGMOD Record, 42 (2013), 17–28. https://doi.org/10.1145/2503792.2503797

2. J. Byun, S. Woo, D. Kim, Chronograph: Enabling temporal graph traversals for efficient information diffusion analysis over time, IEEE Trans. Knowl. Data Eng., 32 (2020), 424–437. https://doi.org/10.1109/TKDE.2019.2891565

3. J. J. Huang, T. Q. Lin, A. Liu, Z. Li, H. Yin, L. Zhao, Influenced nodes discovery in temporal contact network, in Proceedings of the 18th International Conference on Web Information Systems Engineering, (2017), 472–487. https://doi.org/10.1007/978-3-319-68783-4_32

4. T. Q. Lin, Diffusion range prediction in temporal diffusion networks, Master's thesis, Soochow University, 2017.

5. Y. X. Wang, H. Z. Wang, J. Z. Li, H. Gao, Efficient influence maximization in weighted independent cascade model, in Proceedings of the 21st International Conference on Database Systems for Advanced Applications, (2016), 49–64. https://doi.org/10.1007/978-3-319-32049-6_4

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3