Applied machine learning for blood pressure estimation using a small, real-world electrocardiogram and photoplethysmogram dataset

Author:

Wong Mark Kei Fong1,Hei Hao2,Lim Si Zhou1,Ng Eddie Yin-Kwee1

Affiliation:

1. School of Mechanical and Aerospace Engineering, Nanyang Technological University, 639798, Singapore

2. School of Electrical and Electronic Engineering, Nanyang Technological University, 639798, Singapore

Abstract

<abstract> <p>Applying machine learning techniques to electrocardiography and photoplethysmography signals and their multivariate-derived waveforms is an ongoing effort to estimate non-occlusive blood pressure. Unfortunately, real ambulatory electrocardiography and photoplethysmography waveforms are inevitably affected by motion and noise artifacts, so established machine learning architectures perform poorly when trained on data of the Multiparameter Intelligent Monitoring in Intensive Care II type, a publicly available ICU database. Our study addresses this problem by applying four well-established machine learning methods, i.e., random forest regression, support vector regression, Adaboost regression and artificial neural networks, to a small, self-sampled electrocardiography-photoplethysmography dataset (n = 54) to improve the robustness of machine learning to real-world BP estimates. We evaluated the performance using a selection of optimal feature morphologies of waveforms by using pulse arrival time, morphological and frequency photoplethysmography parameters and heart rate variability as characterization data. On the basis of the root mean square error and mean absolute error, our study showed that support vector regression gave the best performance for blood pressure estimation from noisy data, achieving an mean absolute error of 6.97 mmHg, which meets the level C criteria set by the British Hypertension Society. We demonstrate that ambulatory electrocardiography- photoplethysmography signals acquired by mobile discrete devices can be used to estimate blood pressure.</p> </abstract>

Publisher

American Institute of Mathematical Sciences (AIMS)

Subject

Applied Mathematics,Computational Mathematics,General Agricultural and Biological Sciences,Modeling and Simulation,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3