Affiliation:
1. School of Mechanical and Aerospace Engineering, Nanyang Technological University, 639798, Singapore
2. School of Electrical and Electronic Engineering, Nanyang Technological University, 639798, Singapore
Abstract
<abstract>
<p>Applying machine learning techniques to electrocardiography and photoplethysmography signals and their multivariate-derived waveforms is an ongoing effort to estimate non-occlusive blood pressure. Unfortunately, real ambulatory electrocardiography and photoplethysmography waveforms are inevitably affected by motion and noise artifacts, so established machine learning architectures perform poorly when trained on data of the Multiparameter Intelligent Monitoring in Intensive Care II type, a publicly available ICU database. Our study addresses this problem by applying four well-established machine learning methods, i.e., random forest regression, support vector regression, Adaboost regression and artificial neural networks, to a small, self-sampled electrocardiography-photoplethysmography dataset (n = 54) to improve the robustness of machine learning to real-world BP estimates. We evaluated the performance using a selection of optimal feature morphologies of waveforms by using pulse arrival time, morphological and frequency photoplethysmography parameters and heart rate variability as characterization data. On the basis of the root mean square error and mean absolute error, our study showed that support vector regression gave the best performance for blood pressure estimation from noisy data, achieving an mean absolute error of 6.97 mmHg, which meets the level C criteria set by the British Hypertension Society. We demonstrate that ambulatory electrocardiography- photoplethysmography signals acquired by mobile discrete devices can be used to estimate blood pressure.</p>
</abstract>
Publisher
American Institute of Mathematical Sciences (AIMS)
Subject
Applied Mathematics,Computational Mathematics,General Agricultural and Biological Sciences,Modeling and Simulation,General Medicine
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献