Automated polyp segmentation based on a multi-distance feature dissimilarity-guided fully convolutional network

Author:

Mu Nan123,Guo Jinjia4,Wang Rong123

Affiliation:

1. College of Computer Science, Sichuan Normal University, Chengdu 610101, China

2. Visual Computing and Virtual Reality Key Laboratory of Sichuan, Sichuan Normal University, Chengdu 610068, China

3. Education Big Data Collaborative Innovation Center of Sichuan 2011, Chengdu 610101, China

4. Chongqing University-University of Cincinnati Joint Co-op Institution, Chongqing University, Chongqing 400044, China

Abstract

<abstract> <p>Colorectal malignancies often arise from adenomatous polyps, which typically begin as solitary, asymptomatic growths before progressing to malignancy. Colonoscopy is widely recognized as a highly efficacious clinical polyp detection method, offering valuable visual data that facilitates precise identification and subsequent removal of these tumors. Nevertheless, accurately segmenting individual polyps poses a considerable difficulty because polyps exhibit intricate and changeable characteristics, including shape, size, color, quantity and growth context during different stages. The presence of similar contextual structures around polyps significantly hampers the performance of commonly used convolutional neural network (CNN)-based automatic detection models to accurately capture valid polyp features, and these large receptive field CNN models often overlook the details of small polyps, which leads to the occurrence of false detections and missed detections. To tackle these challenges, we introduce a novel approach for automatic polyp segmentation, known as the multi-distance feature dissimilarity-guided fully convolutional network. This approach comprises three essential components, i.e., an encoder-decoder, a multi-distance difference (MDD) module and a hybrid loss (HL) module. Specifically, the MDD module primarily employs a multi-layer feature subtraction (MLFS) strategy to propagate features from the encoder to the decoder, which focuses on extracting information differences between neighboring layers' features at short distances, and both short and long-distance feature differences across layers. Drawing inspiration from pyramids, the MDD module effectively acquires discriminative features from neighboring layers or across layers in a continuous manner, which helps to strengthen feature complementary across different layers. The HL module is responsible for supervising the feature maps extracted at each layer of the network to improve prediction accuracy. Our experimental results on four challenge datasets demonstrate that the proposed approach exhibits superior automatic polyp performance in terms of the six evaluation criteria compared to five current state-of-the-art approaches.</p> </abstract>

Publisher

American Institute of Mathematical Sciences (AIMS)

Subject

Applied Mathematics,Computational Mathematics,General Agricultural and Biological Sciences,Modeling and Simulation,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3