Multi-scale attention and deep supervision-based 3D UNet for automatic liver segmentation from CT
-
Published:2022
Issue:1
Volume:20
Page:1297-1316
-
ISSN:1551-0018
-
Container-title:Mathematical Biosciences and Engineering
-
language:
-
Short-container-title:MBE
Author:
Wang Jinke12, Zhang Xiangyang2, Guo Liang2, Shi Changfa3, Tamura Shinichi4
Affiliation:
1. Department of Software Engineering, Harbin University of Science and Technology, Rongcheng 264300, China 2. School of Automation, Harbin University of Science and Technology, Harbin 150080, China 3. Mobile E-business Collaborative Innovation Center of Hunan Province, Hunan University of Technology and Business, Changsha 410205, China 4. SANKEN, Osaka University, Suita 565-0871, Japan
Abstract
<abstract>
<sec><title>Background</title><p>Automatic liver segmentation is a prerequisite for hepatoma treatment; however, the low accuracy and stability hinder its clinical application. To alleviate this limitation, we deeply mine the context information of different scales and combine it with deep supervision to improve the accuracy of liver segmentation in this paper.</p>
</sec>
<sec><title>Methods</title><p>We proposed a new network called MAD-UNet for automatic liver segmentation from CT. It is grounded in the 3D UNet and leverages multi-scale attention and deep supervision mechanisms. In the encoder, the downsampling pooling in 3D UNet is replaced by convolution to alleviate the loss of feature information. Meanwhile, the residual module is introduced to avoid gradient vanishment. Besides, we use the long-short skip connections (LSSC) to replace the ordinary skip connections to preserve more edge detail. In the decoder, the features of different scales are aggregated, and the attention module is employed to capture the spatial context information. Moreover, we utilized the deep supervision mechanism to improve the learning ability on deep and shallow information.</p>
</sec>
<sec><title>Results</title><p>We evaluated the proposed method on three public datasets, including, LiTS17, SLiver07, and 3DIRCADb, and obtained Dice scores of 0.9727, 0.9752, and 0.9691 for liver segmentation, respectively, which outperform the other state-of-the-art (SOTA) methods.</p>
</sec>
<sec><title>Conclusions</title><p>Both qualitative and quantitative experimental results demonstrate that the proposed method can make full use of the feature information of different stages while enhancing spatial data's learning ability, thereby achieving high liver segmentation accuracy. Thus, it proved to be a promising tool for automatic liver segmentation in clinical assistance.</p>
</sec>
</abstract>
Publisher
American Institute of Mathematical Sciences (AIMS)
Subject
Applied Mathematics,Computational Mathematics,General Agricultural and Biological Sciences,Modeling and Simulation,General Medicine
Reference37 articles.
1. H. A. Nugroho, D. Ihtatho, H. Nugroho, Contrast enhancement for liver tumor identification, in MICCAI Workshop, 41 (2008), 201. https://doi.org/10.54294/1uhwld 2. D. Wong, J. Liu, Y. Fengshou, Q. Tian, W. Xiong, J. Zhou, et al., A semi-automated method for liver tumor segmentation based on 2D region growing with knowledge-based constraints, MICCAI Workshop, 41 (2008), 159. https://doi.org/10.54294/25etax 3. Y. Yuan, Y. Chen, C. Dong, H. Yu, Z. Zhu, Hybrid method combining superpixel, random walk and active contour model for fast and accurate liver segmentation, Comput. Med. Imaging Graphics, 70 (2018), 119–134. https://doi.org/10.1016/j.compmedimag.2018.08.012 4. J. Wang, Y. Cheng, C. Guo, Y. Wang, S. Tamura, Shape-intensity prior level set combining probabilistic atlas and probability map constrains for automatic liver segmentation from abdominal CT images, Int. J. Comput. Assisted Radiol. Surg., 11 (2016), 817–826. https://doi.org/10.1007/s11548-015-1332-9 5. C. Shi, M. Xian, X, Zhou, H. Wang, H. Cheng, Multi-slice low-rank tensor decomposition based multi-atlas segmentation: Application to automatic pathological liver CT segmentation, Med. Image Anal., 73 (2021), 102152. https://doi.org/10.1016/j.media.2021.102152
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|