Safety action over oscillations of a beam excited by moving load via a new active vibration controller

Author:

Bauomy Hany12

Affiliation:

1. Department of Mathematics, College of Arts and Science in Wadi Addawasir, Prince Sattam Bin Abdulaziz University, P.O. Box 54, Wadi Addawasir 11991, Saudi Arabia

2. Department of Mathematics, Faculty of Science, Zagazig University, Zagazig 44519, Egypt

Abstract

<abstract> <p>This paper presents a mixed active controller (NNPDCVF) that combines cubic velocity feedback with a negative nonlinear proportional derivative to reduce the nonlinear vibrating behavior of a nonlinear dynamic beam system. Multiple time-scales method treatment is produced to get the mathematical solution of the equations for the dynamical modeling with NNPDCVF controller. This research focuses on two resonance cases which are the primary and 1/2 subharmonic resonances. Time histories of the primary system and the controller are shown to demonstrate the reaction with and without control. The time-history response, as well as the impacts of the parameters on the system and controller, are simulated numerically using the MATLAB program. Routh-Hurwitz criterion is used to examine the stability of the system under primary resonance. A numerical simulation, using the MATLAB program software, is obtained to show the time-history response, the effect of the parameters on the system and the controller. An investigation is done into how different significant effective coefficients affect the resonance's steady-state response. The results demonstrate that the main resonance response is occasionally impacted by the new active feedback control's ability to effectively attenuate amplitude. Choosing an appropriate control Gaining quantity can enhance the effectiveness of vibration control by avoiding the primary resonance zone and unstable multi-solutions. Optimum control parameter values are calculated. Validation curves are provided to show how closely the perturbation and numerical solutions are related.</p> </abstract>

Publisher

American Institute of Mathematical Sciences (AIMS)

Subject

Applied Mathematics,Computational Mathematics,General Agricultural and Biological Sciences,Modeling and Simulation,General Medicine

Reference50 articles.

1. P. Avitable, Twenty years of structural dynamic modification-a review, Sound Vib., 37 (2003), 14–27.

2. M. Nad, Modification of modal characteristics of vibrating structural elements, Scientific Monographs, Köthen, 2010.

3. M. Sága, M. Žmindák, V. Deký;š, A. Sapietová, Š. Segľa, Selected methods for the analysis and synthesis of mechanical systems, VTS ZU, Zilina, (2009).

4. D. Stăncioiu, H. Ouyang, J. E. Mottershead, Vibration of a beam excited by a moving oscillator considering separation and reattachment, J. Sound Vib., 310 (2008), 1128–1140. https://doi.org/10.1016/j.jsv.2007.08.019

5. L. Sun, Dynamic displacement response of beam-type structures to moving line loads, Int. J. Solids Struct., 38 (2001), 8869–8878. https://doi.org/10.1016/s0020-7683(01)00044-0

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3