Classification and recognition of milk somatic cell images based on PolyLoss and PCAM-Reset50

Author:

Bai Jie12,Xue Heru12,Jiang Xinhua12,Zhou Yanqing12

Affiliation:

1. College of Computer and Information Engineering Inner Mongolia Agricultural University, Hohhot 010018, China

2. Inner Mongolia Autonomous Region Key Laboratory of Big Data Research and Application of Agriculture and Animal Husbandry, Hohhot 010018, China

Abstract

<abstract> <p>Somatic cell count (SCC) is a fundamental approach for determining the quality of cattle and bovine milk. So far, different classification and recognition methods have been proposed, all with certain limitations. In this study, we introduced a new deep learning tool, i.e., an improved ResNet50 model constructed based on the residual network and fused with the position attention module and channel attention module to extract the feature information more effectively. In this paper, macrophages, lymphocytes, epithelial cells, and neutrophils were assessed. An image dataset for milk somatic cells was constructed by preprocessing to increase the diversity of samples. PolyLoss was selected as the loss function to solve the unbalanced category samples and difficult sample mining. The Adam optimization algorithm was used to update the gradient, while Warm-up was used to warm up the learning rate to alleviate the overfitting caused by small sample data sets and improve the model's generalization ability. The experimental results showed that the classification accuracy, precision rate, recall rate, and comprehensive evaluation index F value of the proposed model reached 97%, 94.5%, 90.75%, and 92.25%, respectively, indicating that the proposed model could effectively classify the milk somatic cell images, showing a better classification performance than five previous models (i.e., ResNet50, ResNet18, ResNet34, AlexNet andMobileNetv2). The accuracies of the ResNet18, ResNet34, ResNet50, AlexNet, MobileNetv2, and the new model were 95%, 93%, 93%, 56%, 37%, and 97%, respectively. In addition, the comprehensive evaluation index F1 showed the best effect, fully verifying the effectiveness of the proposed method in this paper. The proposed method overcame the limitations of image preprocessing and manual feature extraction by traditional machine learning methods and the limitations of manual feature selection, improving the classification accuracy and showing a strong generalization ability.</p> </abstract>

Publisher

American Institute of Mathematical Sciences (AIMS)

Subject

Applied Mathematics,Computational Mathematics,General Agricultural and Biological Sciences,Modeling and Simulation,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3