Enhancement of cone beam CT image registration by super-resolution pre-processing algorithm

Author:

Deng Liwei1,Zhang Yuanzhi1,Qi Jingjing1,Huang Sijuan2,Yang Xin2,Wang Jing3

Affiliation:

1. Heilongjiang Provincial Key Laboratory of Complex Intelligent System and Integration, School of Automation, Harbin University of Science and Technology, Harbin 150080, China

2. Department of Radiation Oncology; Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine; Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou 510060, China

3. Faculty of Rehabilitation Medicine, Biofeedback Laboratory, Guangzhou Xinhua University, Guangzhou 510520, China

Abstract

<abstract> <p>In order to enhance cone-beam computed tomography (CBCT) image information and improve the registration accuracy for image-guided radiation therapy, we propose a super-resolution (SR) image enhancement method. This method uses super-resolution techniques to pre-process the CBCT prior to registration. Three rigid registration methods (rigid transformation, affine transformation, and similarity transformation) and a deep learning deformed registration (DLDR) method with and without SR were compared. The five evaluation indices, the mean squared error (MSE), mutual information, Pearson correlation coefficient (PCC), structural similarity index (SSIM), and PCC + SSIM, were used to validate the results of registration with SR. Moreover, the proposed method SR-DLDR was also compared with the VoxelMorph (VM) method. In rigid registration with SR, the registration accuracy improved by up to 6% in the PCC metric. In DLDR with SR, the registration accuracy was improved by up to 5% in PCC + SSIM. When taking the MSE as the loss function, the accuracy of SR-DLDR is equivalent to that of the VM method. In addition, when taking the SSIM as the loss function, the registration accuracy of SR-DLDR is 6% higher than that of VM. SR is a feasible method to be used in medical image registration for planning CT (pCT) and CBCT. The experimental results show that the SR algorithm can improve the accuracy and efficiency of CBCT image alignment regardless of which alignment algorithm is used.</p> </abstract>

Publisher

American Institute of Mathematical Sciences (AIMS)

Subject

Applied Mathematics,Computational Mathematics,General Agricultural and Biological Sciences,Modeling and Simulation,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3