Predicting the prognosis of HER2-positive breast cancer patients by fusing pathological whole slide images and clinical features using multiple instance learning
-
Published:2023
Issue:6
Volume:20
Page:11196-11211
-
ISSN:1551-0018
-
Container-title:Mathematical Biosciences and Engineering
-
language:
-
Short-container-title:MBE
Author:
Wang Yifan1, Zhang Lu1, Li Yan1, Wu Fei2, Cao Shiyu3, Ye Feng3
Affiliation:
1. School of Computer Science, Southwest Petroleum University, Chengdu 610500, China 2. Institute of Applied Physics and Computational Mathematics, China Academy of Engineering Physics, Beijing 100094, China 3. Institute of Clinical Pathology, Key Laboratory of Transplant Engineering and Immunology, NHC, West China Hospital, Sichuan University, Chengdu 610041, China
Abstract
<abstract><p>In 2022, breast cancer will become an important factor affecting women's public health and HER2 positivity for approximately 15–20$ \% $ invasive breast cancer cases. Follow-up data for HER2-positive patients are rare, and research on prognosis and auxiliary diagnosis is still limited. In light of the findings obtained from the analysis of clinical features, we have developed a novel multiple instance learning (MIL) fusion model that integrates hematoxylin-eosin (HE) pathological images and clinical features to accurately predict the prognostic risk of patients. Specifically, we segmented the HE pathology images of patients into patches, clustered them by K-means, aggregated them into a bag feature-level representation through graph attention networks (GATs) and multihead attention networks, and fused them with clinical features to predict the prognosis of patients. We divided West China Hospital (WCH) patients (n = 1069) into a training cohort and internal validation cohort and used The Cancer Genome Atlas (TCGA) patients (n = 160) as an external test cohort. The 3-fold average C-index of the proposed OS-based model was 0.668, the C-index of the WCH test set was 0.765, and the C-index of the TCGA independent test set was 0.726. By plotting the Kaplan-Meier curve, the fusion feature (P = 0.034) model distinguished high- and low-risk groups more accurately than clinical features (P = 0.19). The MIL model can directly analyze a large number of unlabeled pathological images, and the multimodal model is more accurate than the unimodal models in predicting Her2-positive breast cancer prognosis based on large amounts of data.</p></abstract>
Publisher
American Institute of Mathematical Sciences (AIMS)
Subject
Applied Mathematics,Computational Mathematics,General Agricultural and Biological Sciences,Modeling and Simulation,General Medicine
Reference39 articles.
1. R. L. Siegel, K. D. Miller, H. E. Fuchs, A. Jemal, Cancer statistics, 2022, CA Cancer J. Clin., 72 (2022), 7–33. https://doi.org/10.3322/caac.21708 2. E. A. Perez, E. H. Romond, V. J. Suman, J. Jeong, G. Sledge, C. E. Geyer Jr, et al., Trastuzumab plus adjuvant chemotherapy for human epidermal growth factor receptor 2–Positive breast cancer: Planned joint analysis of overall survival from NSABP B-31 and NCCTG N9831, JCO, 32 (2014), 3744–3752. https://doi.org/10.1200/JCO.2014.55.5730 3. C. L. Arteaga, M. X. Sliwkowski, C. K. Osborne, E. A. Perez, F. Puglisi, L. Gianni, Treatment of HER2-positive breast cancer: current status and future perspectives, Nat. Rev. Clin. Oncol., 9 (2012), 16–32. https://doi.org/10.1038/nrclinonc.2011.177 4. J. N. Wang, B. H. Xu, Targeted therapeutic options and future perspectives for HER2-positive breast cancer, Sig. Transduct. Target Ther., 4 (2019), 34. https://doi.org/10.1038/s41392-019-0069-2 5. D. Cameron, M. J. Piccart-Gebhart, R. D. Gelber, M. Procter, A. Goldhirsch, E. de Azambuja, et al., 11 years' follow-up of trastuzumab after adjuvant chemotherapy in HER2-positive early breast cancer: Final analysis of the HERceptin Adjuvant (HERA) trial, Lancet, 389 (2017), 1195–1205. https://doi.org/10.1016/S0140-6736(16)32616-2
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|