Weakly supervised salient object detection via image category annotation
-
Published:2023
Issue:12
Volume:20
Page:21359-21381
-
ISSN:1551-0018
-
Container-title:Mathematical Biosciences and Engineering
-
language:
-
Short-container-title:MBE
Author:
Zhang Ruoqi1, Huang Xiaoming1, Zhu Qiang12
Affiliation:
1. Computer School, Beijing Information Science and Technology University, Beijing 100192, China 2. College of Computer Science and Technology, Zhejiang University, Hangzhou 310013, China
Abstract
<abstract><p>The rapid development of deep learning has made a great progress in salient object detection task. Fully supervised methods need a large number of pixel-level annotations. To avoid laborious and consuming annotation, weakly supervised methods consider low-cost annotations such as category, bounding-box, scribble, etc. Due to simple annotation and existing large-scale classification datasets, the category annotation based methods have received more attention while still suffering from inaccurate detection. In this work, we proposed one weakly supervised method with category annotation. First, we proposed one coarse object location network (COLN) to roughly locate the object of an image with category annotation. Second, we refined the coarse object location to generate pixel-level pseudo-labels and proposed one quality check strategy to select high quality pseudo labels. To this end, we studied COLN twice followed by refinement to obtain a pseudo-labels pair and calculated the consistency of pseudo-label pairs to select high quality labels. Third, we proposed one multi-decoder neural network (MDN) for saliency detection supervised by pseudo-label pairs. The loss of each decoder and between decoders are both considered. Last but not least, we proposed one pseudo-labels update strategy to iteratively optimize pseudo-labels and saliency detection models. Performance evaluation on four public datasets shows that our method outperforms other image category annotation based work.</p></abstract>
Publisher
American Institute of Mathematical Sciences (AIMS)
Subject
Applied Mathematics,Computational Mathematics,General Agricultural and Biological Sciences,Modeling and Simulation,General Medicine
Reference64 articles.
1. R. Fan, Q. Hou, M. M. Cheng, G. Yu, R. R. Martin, S. M. Hu, Associating inter-image salient instances for weakly supervised semantic segmentation, in Proceedings of the European Conference on Computer Vision, (2018), 367–383. https://doi.org/10.1007/978-3-030-01240-3_23 2. N. Meeboonmak, N. Cooharojananone, Aircraft segmentation from remote sensing images using modified deeply supervised salient object detection with short connections, in International Conference on Mathematics and Computers in Science and Engineering, (2020), 184–187. https://doi.org/10.1109/MACISE49704.2020.00040 3. X. Yao, R. Li, J. Zhang, J. Sun, C. Zhang, Explicit boundary guided semi-push-pull contrastive learning for supervised anomaly detection, in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, (2023), 24490–24499. 4. N. Yu, H. Li, Q. Xu, A full-flow inspection method based on machine vision to detect wafer surface defects, Math. Biosci. Eng., 20 (2023), 11821–11846. https://doi.org/10.3934/mbe.2023526 5. S. Hong, T. You, S. Kwak, B. Han, Online tracking by learning discriminative saliency map with convolutional neural network, in International Conference on Machine Learning, (2015), 597–606. https://doi.org/10.48550/arXiv.1502.06796
|
|