Weakly supervised salient object detection via image category annotation

Author:

Zhang Ruoqi1,Huang Xiaoming1,Zhu Qiang12

Affiliation:

1. Computer School, Beijing Information Science and Technology University, Beijing 100192, China

2. College of Computer Science and Technology, Zhejiang University, Hangzhou 310013, China

Abstract

<abstract><p>The rapid development of deep learning has made a great progress in salient object detection task. Fully supervised methods need a large number of pixel-level annotations. To avoid laborious and consuming annotation, weakly supervised methods consider low-cost annotations such as category, bounding-box, scribble, etc. Due to simple annotation and existing large-scale classification datasets, the category annotation based methods have received more attention while still suffering from inaccurate detection. In this work, we proposed one weakly supervised method with category annotation. First, we proposed one coarse object location network (COLN) to roughly locate the object of an image with category annotation. Second, we refined the coarse object location to generate pixel-level pseudo-labels and proposed one quality check strategy to select high quality pseudo labels. To this end, we studied COLN twice followed by refinement to obtain a pseudo-labels pair and calculated the consistency of pseudo-label pairs to select high quality labels. Third, we proposed one multi-decoder neural network (MDN) for saliency detection supervised by pseudo-label pairs. The loss of each decoder and between decoders are both considered. Last but not least, we proposed one pseudo-labels update strategy to iteratively optimize pseudo-labels and saliency detection models. Performance evaluation on four public datasets shows that our method outperforms other image category annotation based work.</p></abstract>

Publisher

American Institute of Mathematical Sciences (AIMS)

Subject

Applied Mathematics,Computational Mathematics,General Agricultural and Biological Sciences,Modeling and Simulation,General Medicine

Reference64 articles.

1. R. Fan, Q. Hou, M. M. Cheng, G. Yu, R. R. Martin, S. M. Hu, Associating inter-image salient instances for weakly supervised semantic segmentation, in Proceedings of the European Conference on Computer Vision, (2018), 367–383. https://doi.org/10.1007/978-3-030-01240-3_23

2. N. Meeboonmak, N. Cooharojananone, Aircraft segmentation from remote sensing images using modified deeply supervised salient object detection with short connections, in International Conference on Mathematics and Computers in Science and Engineering, (2020), 184–187. https://doi.org/10.1109/MACISE49704.2020.00040

3. X. Yao, R. Li, J. Zhang, J. Sun, C. Zhang, Explicit boundary guided semi-push-pull contrastive learning for supervised anomaly detection, in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, (2023), 24490–24499.

4. N. Yu, H. Li, Q. Xu, A full-flow inspection method based on machine vision to detect wafer surface defects, Math. Biosci. Eng., 20 (2023), 11821–11846. https://doi.org/10.3934/mbe.2023526

5. S. Hong, T. You, S. Kwak, B. Han, Online tracking by learning discriminative saliency map with convolutional neural network, in International Conference on Machine Learning, (2015), 597–606. https://doi.org/10.48550/arXiv.1502.06796

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3