Inferring drug-disease associations by a deep analysis on drug and disease networks

Author:

Chen Lei1,Chen Kaiyu1,Zhou Bo2

Affiliation:

1. College of Information Engineering, Shanghai Maritime University, Shanghai 201306, China

2. Shanghai University of Medicine & Health Sciences, Shanghai 201318, China

Abstract

<abstract> <p>Drugs, which treat various diseases, are essential for human health. However, developing new drugs is quite laborious, time-consuming, and expensive. Although investments into drug development have greatly increased over the years, the number of drug approvals each year remain quite low. Drug repositioning is deemed an effective means to accelerate the procedures of drug development because it can discover novel effects of existing drugs. Numerous computational methods have been proposed in drug repositioning, some of which were designed as binary classifiers that can predict drug-disease associations (DDAs). The negative sample selection was a common defect of this method. In this study, a novel reliable negative sample selection scheme, named RNSS, is presented, which can screen out reliable pairs of drugs and diseases with low probabilities of being actual DDAs. This scheme considered information from k-neighbors of one drug in a drug network, including their associations to diseases and the drug. Then, a scoring system was set up to evaluate pairs of drugs and diseases. To test the utility of the RNSS, three classic classification algorithms (random forest, bayes network and nearest neighbor algorithm) were employed to build classifiers using negative samples selected by the RNSS. The cross-validation results suggested that such classifiers provided a nearly perfect performance and were significantly superior to those using some traditional and previous negative sample selection schemes.</p> </abstract>

Publisher

American Institute of Mathematical Sciences (AIMS)

Subject

Applied Mathematics,Computational Mathematics,General Agricultural and Biological Sciences,Modeling and Simulation,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3