Affiliation:
1. College of Information Engineering, Shanghai Maritime University, Shanghai 201306, China
2. Shanghai University of Medicine & Health Sciences, Shanghai 201318, China
Abstract
<abstract>
<p>Drugs, which treat various diseases, are essential for human health. However, developing new drugs is quite laborious, time-consuming, and expensive. Although investments into drug development have greatly increased over the years, the number of drug approvals each year remain quite low. Drug repositioning is deemed an effective means to accelerate the procedures of drug development because it can discover novel effects of existing drugs. Numerous computational methods have been proposed in drug repositioning, some of which were designed as binary classifiers that can predict drug-disease associations (DDAs). The negative sample selection was a common defect of this method. In this study, a novel reliable negative sample selection scheme, named RNSS, is presented, which can screen out reliable pairs of drugs and diseases with low probabilities of being actual DDAs. This scheme considered information from k-neighbors of one drug in a drug network, including their associations to diseases and the drug. Then, a scoring system was set up to evaluate pairs of drugs and diseases. To test the utility of the RNSS, three classic classification algorithms (random forest, bayes network and nearest neighbor algorithm) were employed to build classifiers using negative samples selected by the RNSS. The cross-validation results suggested that such classifiers provided a nearly perfect performance and were significantly superior to those using some traditional and previous negative sample selection schemes.</p>
</abstract>
Publisher
American Institute of Mathematical Sciences (AIMS)
Subject
Applied Mathematics,Computational Mathematics,General Agricultural and Biological Sciences,Modeling and Simulation,General Medicine
Reference66 articles.
1. D. McHale, M. Penny, Chapter 19 - Genomics, New drug development, and precision medicines, in Medical and Health Genomics, Oxford: Academic Press, (2016), 247-259. https://doi.org/10.1016/B978-0-12-420196-5.00019-8
2. C. W. Lindsley, New statistics on the cost of new drug development and the trouble with CNS drugs, ACS Chem. Neurosci., 5 (2014), 1142. https://doi.org/10.1021/cn500298z
3. M. R. Hurle, L. Yang, Q. Xie, D. K. Rajpal, P. Sanseau, P. Agarwal, Computational drug repositioning: from data to therapeutics, Clin. Pharmacol. Ther., 93 (2013), 335-341. https://doi.org/10.1038/clpt.2013.1
4. J. Li, S. Zheng, B. Chen, A. J. Butte, S. J. Swamidass, Z. Lu, A survey of current trends in computational drug repositioning, Briefings Bioinf., 17 (2016), 2-12. https://doi.org/10.1093/bib/bbv020
5. Q. Dai, C. Bao, Y. Hai, S. Ma, T. Zhou, C. Wang, et al., MTGIpick allows robust identification of genomic islands from a single genome, Briefings Bioinf., 19 (2018), 361-373. https://doi.org/10.1093/bib/bbw118
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献