Multimedia IoT-surveillance optimization model using mobile-edge authentic computing
-
Published:2023
Issue:11
Volume:20
Page:19174-19190
-
ISSN:1551-0018
-
Container-title:Mathematical Biosciences and Engineering
-
language:
-
Short-container-title:MBE
Author:
Alamri Faten S.1, Haseeb Khalid2, Saba Tanzila2, Lloret Jaime3, Jimenez Jose M.3
Affiliation:
1. Department of Mathematical Sciences, College of Science, Princess Nourah Bint Abdulrahman University, P.O.Box 84428, Riyadh, 11671, Saudi Arabia 2. Artificial Intelligence & Data Analytics (AIDA) Lab CCIS, Prince Sultan University, Riyadh 12435, Saudi Arabia 3. Instituto de Investigación para la Gestión Integrada de Zonas Costeras, Universitat Politenica de Valencia, 46730, Gandia, València, Spain
Abstract
<abstract>
<p>Smart technologies are advancing the development of cutting-edge systems by exploring the future network. The Internet of Things (IoT) and many multimedia sensors interact with each other for collecting and transmitting visual data. However, managing enormous amounts of data from numerous network devices is one of the main research challenges. In this context, various IoT systems have been investigated and have provided efficient data retrieval and processing solutions. For multimedia systems, however, controlling inefficient bandwidth utilization and ensuring timely transmission of vital information are key research concerns. Moreover, to transfer multimedia traffic while balancing communication costs for the IoT system, a sustainable solution with intelligence in real-life applications is demanded. Furthermore, trust must be formed for technological advancement to occur; such an approach provides the smart communication paradigm with the incorporation of edge computing. This study proposed a model for optimizing multimedia using a combination of edge computing intelligence and authentic strategies. Mobile edges analyze network states to discover the system's status and minimize communication disruptions. Moreover, direct and indirect authentication determines the reliability of data forwarders and network stability. The proposed authentication approach minimizes the possibility of data compromise and increases trust in multimedia surveillance systems. Using simulation testing, the proposed model outperformed other comparable work in terms of byte delivery, packet overhead, packet delay, and data loss metrics.</p>
</abstract>
Publisher
American Institute of Mathematical Sciences (AIMS)
Subject
Applied Mathematics,Computational Mathematics,General Agricultural and Biological Sciences,Modeling and Simulation,General Medicine
Reference45 articles.
1. Q. Tang, F. R. Yu, R. Xie, A. Boukerche, T. Huang, Y. Liu, Internet of intelligence: A survey on the enabling technologies, applications, and challenges, IEEE Commun. Surveys Tutor., 24 (2022), 1394–1434. https://doi.org/10.1109/COMST.2017.2691349 2. I. Abunadi, A. Rehman, K. Haseeb, T. Alam, G. Jeon, A multi-parametric machine learning approach using authentication trees for the healthcare industry, Expert Systems, (2022), e13202. https://doi.org/10.1111/exsy.13202 3. I. Sarrigiannis, K. Ramantas, E. Kartsakli, P.-V. Mekikis, A. Antonopoulos, C. Verikoukis, Online VNF lifecycle management in an MEC-enabled 5G IoT architecture, IEEE Int. Things J., 7 (2019), 4183–4194. https://doi.org/10.1109/JIOT.2019.2944695 4. S. H. Alsamhi, F. Afghah, R. Sahal, A. Hawbani, M. A. Al-qaness, B. Lee, et al., Green internet of things using UAVs in B5G networks: A review of applications and strategies, Ad Hoc Networks, 117 (2021), 102505. https://doi.org/10.1016/j.adhoc.2021.102505 5. L. Qiao, Y. Li, D. Chen, S. Serikawa, M. Guizani, Z. Lv, A survey on 5G/6G, AI, and Robotics, Comput. Electr. Eng., 95 (2021), 107372. https://doi.org/10.1016/j.compeleceng.2021.107372
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|