Research on rainy day traffic sign recognition algorithm based on PMRNet

Author:

Zhang Jing1,Zhang Haoliang1,Lang Ding2,Xu Yuguang1,Li Hong-an1,Li Xuewen3

Affiliation:

1. College of Computer Science and Technology, Xi'an University of Science and Technology, Xi'an 710054, China

2. College of Energy, Xi'an University of Science and Technology, Xi'an 710054, China

3. College of Safety Science and Engineering, Xi'an University of Science and Technology, Xi'an 710054, China

Abstract

<abstract><p>The recognition of traffic signs is of great significance to intelligent driving and traffic systems. Most current traffic sign recognition algorithms do not consider the impact of rainy weather. The rain marks will obscure the recognition target in the image, which will lead to the performance degradation of the algorithm, a problem that has yet to be solved. In order to improve the accuracy of traffic sign recognition in rainy weather, we propose a rainy traffic sign recognition algorithm. The algorithm in this paper includes two modules. First, we propose an image deraining algorithm based on the Progressive multi-scale residual network (PMRNet), which uses a multi-scale residual structure to extract features of different scales, so as to improve the utilization rate of the algorithm for information, combined with the Convolutional long-short term memory (ConvLSTM) network to enhance the algorithm's ability to extract rain mark features. Second, we use the CoT-YOLOv5 algorithm to recognize traffic signs on the recovered images. In this paper, in order to improve the performance of YOLOv5 (You-Only-Look-Once, YOLO), the 3 × 3 convolution in the feature extraction module is replaced by the Contextual Transformer (CoT) module to make up for the lack of global modeling capability of Convolutional Neural Network (CNN), thus improving the recognition accuracy. The experimental results show that the deraining algorithm based on PMRNet can effectively remove rain marks, and the evaluation indicators Peak Signal-to-Noise Ratio (PSNR) and Structural Similarity Index Measure (SSIM) are better than the other representative algorithms. The mean Average Precision (mAP) of the CoT-YOLOv5 algorithm on the TT100k datasets reaches 92.1%, which is 5% higher than the original YOLOv5.</p></abstract>

Publisher

American Institute of Mathematical Sciences (AIMS)

Subject

Applied Mathematics,Computational Mathematics,General Agricultural and Biological Sciences,Modeling and Simulation,General Medicine

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Multimodal Gesture Recognition with Spatio-Temporal Features Fusion Based on YOLOv5 and MediaPipe;International Journal of Pattern Recognition and Artificial Intelligence;2024-06-29

2. Viewing on Google Maps Using Yolov8 for Damaged Traffic Signs Detection;Communications in Computer and Information Science;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3