Bone age assessment from articular surface and epiphysis using deep neural networks

Author:

Deng Yamei1,Chen Yonglu1,He Qian1,Wang Xu2,Liao Yong3,Liu Jue1,Liu Zhaoran1,Huang Jianwei1,Song Ting1

Affiliation:

1. Department of Radiology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510150, China

2. School of Automation, Guangdong University of Technology, Guangzhou 510006, China

3. School of physics, electronics and electrical engineering, Xiangnan University, Chenzhou 423000, China

Abstract

<abstract><p>Bone age assessment is of great significance to genetic diagnosis and endocrine diseases. Traditional bone age diagnosis mainly relies on experienced radiologists to examine the regions of interest in hand radiography, but it is time-consuming and may even lead to a vast error between the diagnosis result and the reference. The existing computer-aided methods predict bone age based on general regions of interest but do not explore specific regions of interest in hand radiography. This paper aims to solve such problems by performing bone age prediction on the articular surface and epiphysis from hand radiography using deep convolutional neural networks. The articular surface and epiphysis datasets are established from the Radiological Society of North America (RSNA) pediatric bone age challenge, where the specific feature regions of the articular surface and epiphysis are manually segmented from hand radiography. Five convolutional neural networks, i.e., ResNet50, SENet, DenseNet-121, EfficientNet-b4, and CSPNet, are employed to improve the accuracy and efficiency of bone age diagnosis in clinical applications. Experiments show that the best-performing model can yield a mean absolute error (MAE) of 7.34 months on the proposed articular surface and epiphysis datasets, which is more accurate and fast than the radiologists. The project is available at <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="https://github.com/YameiDeng/BAANet/">https://github.com/YameiDeng/BAANet/</ext-link>, and the annotated dataset is also published at <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="https://doi.org/10.5281/zenodo.7947923">https://doi.org/10.5281/zenodo.7947923</ext-link>.</p></abstract>

Publisher

American Institute of Mathematical Sciences (AIMS)

Subject

Applied Mathematics,Computational Mathematics,General Agricultural and Biological Sciences,Modeling and Simulation,General Medicine

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3