Classification of Alzheimer's disease using robust TabNet neural networks on genetic data

Author:

Jin Yu12,Ren Zhe12,Wang Wenjie12,Zhang Yulei12,Zhou Liang1,Yao Xufeng1,Wu Tao1

Affiliation:

1. College of Medical Imaging, Jiading District Central Hospital affiliated Shanghai University of Medicine and Health Sciences, Shanghai 201318, China

2. School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China

Abstract

<abstract><p>Alzheimer's disease (AD) is one of the most common neurodegenerative diseases and its onset is significantly associated with genetic factors. Being the capabilities of high specificity and accuracy, genetic testing has been considered as an important technique for AD diagnosis. In this paper, we presented an improved deep learning (DL) algorithm, namely differential genes screening TabNet (DGS-TabNet) for AD binary and multi-class classifications. For performance evaluation, our proposed approach was compared with three novel DLs of multi-layer perceptron (MLP), neural oblivious decision ensembles (NODE), TabNet as well as five classical machine learnings (MLs) including decision tree (DT), random forests (RF), gradient boosting decision tree (GBDT), light gradient boosting machine (LGBM) and support vector machine (SVM) on the public data set of gene expression omnibus (GEO). Moreover, the biological interpretability of global important genetic features implemented for AD classification was revealed by the Kyoto encyclopedia of genes and genomes (KEGG) and gene ontology (GO). The results demonstrated that our proposed DGS-TabNet achieved the best performance with an accuracy of 93.80% for binary classification, and with an accuracy of 88.27% for multi-class classification. Meanwhile, the gene pathway analyses demonstrated that there existed two most important global genetic features of AVIL and NDUFS4 and those obtained 22 feature genes were partially correlated with AD pathogenesis. It was concluded that the proposed DGS-TabNet could be used to detect AD-susceptible genes and the biological interpretability of susceptible genes also revealed the potential possibility of being AD biomarkers.</p></abstract>

Publisher

American Institute of Mathematical Sciences (AIMS)

Subject

Applied Mathematics,Computational Mathematics,General Agricultural and Biological Sciences,Modeling and Simulation,General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3