An improved multi-strategy beluga whale optimization for global optimization problems

Author:

Chen Hongmin1,Wang Zhuo1,Wu Di2,Jia Heming1,Wen Changsheng1,Rao Honghua1,Abualigah Laith34

Affiliation:

1. School of Information Engineering, Sanming University, Sanming 365004, China

2. School of Education and Music, Sanming University, Sanming 365004, China

3. Prince Hussein Bin Abdullah College for Information Technology, Al Al-Bayt University, Mafraq 130040, Jordan

4. School of Computer Sciences, Universiti Sains Malaysia, Pulau Pinang 11800, Malaysia

Abstract

<abstract> <p>This paper presents an improved beluga whale optimization (IBWO) algorithm, which is mainly used to solve global optimization problems and engineering problems. This improvement is proposed to solve the imbalance between exploration and exploitation and to solve the problem of insufficient convergence accuracy and speed of beluga whale optimization (BWO). In IBWO, we use a new group action strategy (GAS), which replaces the exploration phase in BWO. It was inspired by the group hunting behavior of beluga whales in nature. The GAS keeps individual belugas whales together, allowing them to hide together from the threat posed by their natural enemy, the tiger shark. It also enables the exchange of location information between individual belugas whales to enhance the balance between local and global lookups. On this basis, the dynamic pinhole imaging strategy (DPIS) and quadratic interpolation strategy (QIS) are added to improve the global optimization ability and search rate of IBWO and maintain diversity. In a comparison experiment, the performance of the optimization algorithm (IBWO) was tested by using CEC2017 and CEC2020 benchmark functions of different dimensions. Performance was analyzed by observing experimental data, convergence curves, and box graphs, and the results were tested using the Wilcoxon rank sum test. The results show that IBWO has good optimization performance and robustness. Finally, the applicability of IBWO to practical engineering problems is verified by five engineering problems.</p> </abstract>

Publisher

American Institute of Mathematical Sciences (AIMS)

Subject

Applied Mathematics,Computational Mathematics,General Agricultural and Biological Sciences,Modeling and Simulation,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3