A fuzzy neural network-based automatic fault diagnosis method for permanent magnet synchronous generators

Author:

Wang Xueyan

Abstract

<abstract> <p>In recent years, automatic fault diagnosis for various machines has been a hot topic in the industry. This paper focuses on permanent magnet synchronous generators and combines fuzzy decision theory with deep learning for this purpose. Thus, a fuzzy neural network-based automatic fault diagnosis method for permanent magnet synchronous generators is proposed in this paper. The particle swarm algorithm optimizes the smoothing factor of the network for the effect of probabilistic neural network classification, as affected by the complexity of the structure and parameters. And on this basis, the fuzzy C means algorithm is used to obtain the clustering centers of the fault data, and the network model is reconstructed by selecting the samples closest to the clustering centers as the neurons in the probabilistic neural network. The mathematical analysis and derivation of the T-S (Tkagi-Sugneo) fuzzy neural network-based diagnosis strategy are carried out; the T-S fuzzy neural network-based generator fault diagnosis system is designed. The model is implemented on the MATLAB/Simulink platform for simulation and verification, the experiments show that the T-S fuzzy diagnosis strategy is significantly improved, and the design purpose is achieved. The fuzzy neural network has a parallel structure and can perform parallel data processing. This parallel mechanism can solve the problem of large-scale real-time computation in control systems, and the redundancy in parallel computation can make the control system highly fault-tolerant and robust. The fault diagnosis model based on an improved probabilistic neural network is applied to the fault data to verify the effectiveness and accuracy of the model.</p> </abstract>

Publisher

American Institute of Mathematical Sciences (AIMS)

Subject

Applied Mathematics,Computational Mathematics,General Agricultural and Biological Sciences,Modeling and Simulation,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3